Skip to main content
Log in

Extreme events in Nagel–Schreckenberg model of traffic flow on complex networks

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The Nagel–Schreckenberg vehicular traffic model is extended to analyse a system of vehicles moving on a scale-free network to study extreme events in them. The dependence of the free-flow and congestion states on the density of vehicles is determined. In particular, a free-flow state at low vehicular density is observed and it gradually transitions to a congested state at higher density. Using detrended fluctuation analysis, it is shown that the flux of vehicles are long range correlated in a regime of low density. At higher densities, the flux becomes uncorrelated. We study the recurrence interval distribution for extreme events and the probability for its occurrence at low and high vehicular density regimes. It is shown that the occurrence probability for extreme events is independent of the degree of the node or the threshold used for defining extreme events

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. van Wageningen-Kessels, H. van Lint, K. Vuik, S. Hoogendoorn, EURO J. Transport. Log. 4, 445 (2015)

    Article  Google Scholar 

  2. I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (American Elsevier, New York, 1971)

    MATH  Google Scholar 

  3. S. Maerivoet, B. De Moor, Phys. Rep. 419, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. De Martino, L. DallAsta, G. Bianconi, M. Marsili, Phys. Rev. E 79, 015101(R) (2009)

    Article  ADS  Google Scholar 

  7. S. Manfredi, E. Di Tucci, V. Latora, Phys. Rev. Lett. 120, 068301 (2018)

    Article  ADS  Google Scholar 

  8. C. Dabrowski, Comput. Sci. Rev. 18, 10 (2015)

    Article  MathSciNet  Google Scholar 

  9. Shin-ichi Tadaki et al., New J. Phys. 15, 103034 (2013)

    Article  ADS  Google Scholar 

  10. Y. Sugiyama et al., New J. Phys. 10, 033001 (2008)

    Article  ADS  Google Scholar 

  11. A. Nakayama et al., New J. Phys. 11, 083025 (2009)

    Article  ADS  Google Scholar 

  12. B.S. Kerner, Phys. Rev. Lett. 81, 3797 (1998)

    Article  ADS  Google Scholar 

  13. G. Zeng et al., PNAS 116, 23 (2019)

    Article  ADS  Google Scholar 

  14. Y. Dülgar et al., J. Intell. Trans. Sys. 24, 539 (2019)

    Article  Google Scholar 

  15. B.S. Kerner, Phys. Rev. E 97, 042303 (2018)

    Article  ADS  Google Scholar 

  16. L. Zhang et al., PNAS 116, 8673 (2019)

    Article  ADS  Google Scholar 

  17. M.S. Vimal Kishore, A. Santhanam, R.E. Amritkar, Phys. Rev. Lett. 106, 188701 (2011)

    Article  ADS  Google Scholar 

  18. M.S. Vimal Kishore, A. Santhanam, R.E. Amritkar, Phys. Rev. E 85, 056120 (2012)

    Article  ADS  Google Scholar 

  19. W. Staffeldt, A.K. Hartmann, Phys. Rev. E 100, 062301 (2019)

    Article  ADS  Google Scholar 

  20. M.S. Santhanam, A. Holger Kantz, Phys. Rev. E 78, 051113 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jan. Beran, Statistics for Long-Memory Processes (Vol. 61), (Chapman and Hall/CRC, 1994)

  22. Wilfredo Palma, Long-Memory Time Series: Theory and Methods (John Wiley & Sons, New York, 2007).

    Book  Google Scholar 

  23. Vladas Pipiras and Murad S. Taqqu, Long Range Dependence and Self-Similarity (Vol. 45), (Cambridge University Press, 2017)

  24. A. Bunde et al., Phys. Rev. Lett. 94, 048701 (2005)

    Article  ADS  Google Scholar 

  25. K. Nagel, M. Schreckenberg, J. Phys. I 2, 2221 (1992)

    Google Scholar 

  26. Réka. Albert, Albert-László. Barabsi, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  27. W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 70, 016115 (2004)

    Article  ADS  Google Scholar 

  28. O. Biham, A. Middleton, D. Levine, Phys. Rev. A 46(10), R6124 (1992)

    Article  ADS  Google Scholar 

  29. N. Geroliminis, C.F. Daganzo, Transport. Res. Part B Methodol. 42, 759 (2008)

    Article  Google Scholar 

  30. B. Piccoli, A. Tosin, Encycl. Complex. Syst. Sci. 22, 9727 (2009)

    Google Scholar 

  31. B. Seibold et al., Netw. Heterog. Media 8, 745 (2013)

    Article  MathSciNet  Google Scholar 

  32. Y.D. Chen et al., Mod. Phys. Lett. B 22, 101 (2008)

    Article  ADS  Google Scholar 

  33. M.R. Perati et al., J. Transp. Eng. 138, 1233 (2012)

    Article  Google Scholar 

  34. P. Shang, Y. Lu, S. Kama, Phys. A 370, 769 (2006)

    Article  Google Scholar 

  35. S. Feng et al., Phys. A 492, 639 (2018)

    Article  Google Scholar 

  36. S. Chand, G. Aouad, V.V. Dixit, Transp. Res. Rec. 2616, 49 (2017)

    Article  Google Scholar 

  37. R. Hardstone et al., Front. Physiol. 3, 450 (2012)

    Article  Google Scholar 

  38. J.W. Kantelhardt et al., Phys. A 295, 441 (2001)

    Article  Google Scholar 

  39. C.-K. Peng, S. Havlin, H.E. Stanley, A.E. Goldberg, Chaos 5, 82 (1995)

    Article  ADS  Google Scholar 

  40. A. Bunde et al., Phys. A 330, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MSS introduced the problem, KG worked out the details and performed the simulations. Both KG and MSS wrote the manuscript.

Corresponding author

Correspondence to M. S. Santhanam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Santhanam, M.S. Extreme events in Nagel–Schreckenberg model of traffic flow on complex networks. Eur. Phys. J. Spec. Top. 230, 3201–3209 (2021). https://doi.org/10.1140/epjs/s11734-021-00016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00016-0

Navigation