Skip to main content
Log in

Symmetry-breaking-induced tipping to aging

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The competing effect of heterogeneity and symmetry breaking coupling on the emerging dynamics in a system of N globally coupled Stuart–Landau oscillators is investigated. Increasing the heterogeneity, using the standard deviation of the Hopf bifurcation parameter, favors the macroscopic oscillatory state for low values of the symmetry breaking coupling and inhomogeneous steady state for larger values of the coupling. There is also a transition, tipping, to homogeneous steady state (aging state) from the macroscopic oscillatory state. The limiting factor in the diffusive coupling favors the macroscopic oscillatory state even in the presence of a large fraction of inactive oscillators in the network thereby increasing the robustness of the network. The globally coupled oscillators are reduced to a system of two evolution equations for the macroscopic order parameters, corresponding to the mean field and the shape parameter, using the self-consistent field approach. The bifurcation diagrams obtained from the mean-field variables elucidate various bifurcation scenarios responsible for the dynamical transitions observed in N globally coupled Stuart–Landau oscillators. In particular, tipping to the aging state is found to occur via the Hopf and pitchfork bifurcations illustrating the phenomenon of bifurcation-induced tipping. Analytical stability (critical) curves of these bifurcations, deduced from the mean-field variables, are found to fairly well agree with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Daido, K. Nakanishi, Phys. Rev. Lett. 93, 104101 (2004)

    Article  ADS  Google Scholar 

  2. H. Daido, Europhys. Lett. 87, 4 (2009)

    Article  Google Scholar 

  3. H. Daido, Phys. Rev. E 83, 026209 (2011)

    Article  ADS  Google Scholar 

  4. W. Huang, X. Zhang, X. Hu, Y. Zou, Z. Liu, S. Guan, Chaos 24, 023122 (2014)

    Article  ADS  Google Scholar 

  5. G. Tanaka, K. Morino, H. Daido, K. Aihara, Phys. Rev. E 89, 052906 (2014)

    Article  ADS  Google Scholar 

  6. H. Daido, Europhys. Lett. 84, 10002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Thakur, D. Sharma, A. Sen, Phys. Rev. E 90, 042904 (2014)

    Article  ADS  Google Scholar 

  8. H. Daido, K. Nakanishi, Phys. Rev. E 75, 056206 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Morino, G. Tanaka, K. Aihara, Sci. Rep. 2, 232 (2012)

    Article  Google Scholar 

  10. K. Morino, G. Tanaka, K. Aihara, Phys. Rev. E 83, 056208 (2011)

    Article  ADS  Google Scholar 

  11. S. Kundu, S. Majhi, P. Karmakar, D. Ghosh, B. Rakshit, Europhys. Lett. 123, 30001 (2018)

    Article  ADS  Google Scholar 

  12. Y. Liu, W. Zou, M. Zhan, J. Duan, J. Kurths, Europhys. Lett. 114, 40004 (2016)

    Article  ADS  Google Scholar 

  13. U. Singh, K. Sathiyadevi, V.K. Chandrasekar, W. Zou, J. Kurths, D.V. Senthilkumar, New J. Phys. 22, 09324 (2020)

    Google Scholar 

  14. S. Sun, N. Ma, W. Xu, Sci. Rep. 7, 42715 (2017)

    Article  ADS  Google Scholar 

  15. G. Saxena, A. Prasad, R. Ramaswamy, Phys. Rep. 521, 205 (2012)

    Article  ADS  Google Scholar 

  16. A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Schneider, M. Kapeller, S. Loos, A. Zakharova, B. Fiedler, E. Schöll, Phys. Rev. E 92, 052915 (2015)

    Article  ADS  Google Scholar 

  18. A. Koseska, E. Volkov, J. Kurths, Phys. Rev. Lett. 111, 024103 (2013)

    Article  ADS  Google Scholar 

  19. A. Zakarova, I. Schneider, Y.N. Kyrychko, K.B. Blyuss, A. Koseska, B. Fiedler, E. Schöll, Europhys. Lett. 104, 50004 (2013)

    Article  ADS  Google Scholar 

  20. A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014)

    Article  ADS  Google Scholar 

  21. T. Banerjee, Europhys. Lett. 110, 60003 (2015)

    Article  ADS  Google Scholar 

  22. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 91, 052915 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 93, 052213 (2016)

    Article  ADS  Google Scholar 

  24. K. Sathiyadevi, S. Karthiga, V.K. Chandrasekar, D.V. Senthilkumar, M. Lakshmanan, Phys. Rev. E 95, 042301 (2017)

    Article  ADS  Google Scholar 

  25. K. Sathiyadevi, V.K. Chandrasekar, D.V. Senthilkumar, M. Lakshmanan, Phys. Rev. E 97, 032207 (2018)

    Article  ADS  Google Scholar 

  26. B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (Society for Industrial and Applied Mathematics, Philadelphia, 2002).

    Book  Google Scholar 

  27. D.V. Wei Zou, Senthilkumar, R. Nagao, I.Z. Kiss, Y. Tang, A. Koseska, J. Duan , J. Kurths, Nat. Commun. 7, 7709 (2015)

  28. D. Ghosh, T. Banerjee, J. Kurths, Phys. Rev. E 92, 052908 (2015)

    Article  ADS  Google Scholar 

  29. D. Ghosh, T. Banerjee, Phys. Rev. E 90, 062908 (2014)

    Article  ADS  Google Scholar 

  30. I. Gowthaman, K. Sathiyadevi, V.K. Chandrasekar, D.V. Senthilkumar, Nonlinear Dyn. 101, 53 (2020)

    Article  Google Scholar 

  31. S. De Monte, F. D‘ Ovidio, Europhys. Lett. 58, 21 (2002)

  32. G.M. Pritula, V.I. Prytula, O.V. Usatenko, J. Phys. A Math. Theor. 49, 065101 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

IG wishes to thank SASTRA Deemed University for research fund and extending infrastructure support to carry out this work. The work of VKC forms part of a research project sponsored by CSIR Project under Grant No. 03(1444)/18/EMRII and SERB-DST- MATRICS Grant No. MTR/2018/000676. The work of ML is supported by the Department of Science and Technology Science and Engineering Research Board Distinguished Fellowship (Grant No. SERB/F/6717/2017-18).

Author information

Authors and Affiliations

Authors

Contributions

VKC and DVS formulated the problem. IG carried out the simulations and calculations. All the authors discussed the results and drafted the manuscript.

Corresponding author

Correspondence to V. K. Chandrasekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthaman, I., Chandrasekar, V.K., Senthilkumar, D.V. et al. Symmetry-breaking-induced tipping to aging. Eur. Phys. J. Spec. Top. 230, 3181–3188 (2021). https://doi.org/10.1140/epjs/s11734-021-00010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00010-6

Navigation