Skip to main content
Log in

Initial and final state temperature of \(K^{*0}\) in Beam Energy Scan of Au–Au collisions at RHIC energies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

To determine the center of mass energy at which ordinary matter undergoes a transition to hot and dense matter, we employed a combination of the blast wave model and Tsallis statistics. Specifically, we analyzed the transverse momentum spectra of resonance particles (in this case, \(K^{*0}\)) produced in different centrality intervals during Au–Au collisions at various energies ranging from \(\sqrt{s_{NN}}= 7.7\) to 39 GeV. Our findings include the phase transition from hadronic matter to the quark-gluon plasma (QGP), and a quick expansion of the system at higher energies and in more central collisions, and disclose the fact that the central collision system, as well as the systems with higher center of mass energies, are easy to be in equilibrium. Our observations indicate a phase transition occurring from ordinary hadronic matter to the quark-gluon plasma (QGP) state in the final stages of collisions but not in the initial stages. Besides, we presented the correlation of \(T_0\) with various parameters and reported the higher excitation degree of the fireball and its rapid expansion. Our results can provide further insights into the role of the fluctuations in thermal excitation and collective expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are included within the article and are cited in relevant places within the text as references.]

References

  1. B. Liu, M. Toro, G.Y. Shao, V. Greco, C.W. Shen, Z.H. Li, Hadron-quark phase coexistence in a hybrid MIT-Bag model. Eur. Phys. J. A 47, 104 (2011). https://doi.org/10.1140/epja/i2011-11104-6. arXiv:1105.0555 [nucl-th]

    Article  ADS  Google Scholar 

  2. H. Satz, R. Stock, Quark matter: the beginning. Nucl. Phys. A 956, 898–901 (2016). https://doi.org/10.1016/j.nuclphysa.2016.06.002

    Article  ADS  Google Scholar 

  3. H. Bohr, H.B. Nielsen, Hadron production from a boiling quark soup. Nucl. Phys. B 128, 275–293 (1977). https://doi.org/10.1016/0550-3213(77)90032-3

    Article  ADS  Google Scholar 

  4. C.P. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd edn. (Springer Press, New York, 2004)

    Book  Google Scholar 

  5. Z.w. Lin, M. Gyulassy, Open charm as a probe of preequilibrium dynamics in nuclear collisions. Phys. Rev. C 51 (1995), 2177–2187 [erratum: Phys. Rev. C 52 (1995), 440] https://doi.org/10.1103/PhysRevC.52.440arXiv:nucl-th/9409007 [nucl-th]

  6. F. Karsch, D. Kharzeev, K. Tuchin, Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 663, 217–221 (2008). https://doi.org/10.1016/j.physletb.2008.01.080. arXiv:0711.0914 [hep-ph]

    Article  ADS  Google Scholar 

  7. D. Kharzeev, K. Tuchin, Bulk viscosity of QCD matter near the critical temperature. JHEP 09, 093 (2008). https://doi.org/10.1088/1126-6708/2008/09/093. arXiv:0705.4280 [hep-ph]

    Article  ADS  Google Scholar 

  8. M. Cacciari, P. Nason, R. Vogt, QCD predictions for charm and bottom production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001. arXiv:hep-ph/0502203 [hep-ph]

    Article  ADS  Google Scholar 

  9. M.A. Stephanov, QCD phase diagram and the critical point. Prog. Theor. Phys. Suppl. 153, 139–156 (2004). https://doi.org/10.1142/S0217751X05027965. arXiv:hep-ph/0402115 [hep-ph]

    Article  ADS  Google Scholar 

  10. A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G. Pettini, Chiral phase transitions in QCD for finite temperature and density. Phys. Rev. D 41, 1610 (1990). https://doi.org/10.1103/PhysRevD.41.1610

    Article  ADS  Google Scholar 

  11. M. Tokarev, A. Kechechyan, I. Zborovský, Validation of \(z\)-scaling for negative particle production in \(Au\) + \(Au\) collisions from BES-I at STAR. Nucl. Phys. A 993, 121646 (2020). https://doi.org/10.1016/j.nuclphysa.2019.121646

    Article  Google Scholar 

  12. G. Odyniec, for the STAR Collaboration, PoS CORFU2018, 151 (2018)

  13. L. Kumar, Review of recent results from the RHIC beam energy scan. Mod. Phys. Lett. A 28, 1330033 (2013). https://doi.org/10.1142/S0217732313300334. arXiv:1311.3426 [nucl-ex]

    Article  ADS  Google Scholar 

  14. L. Kumar, STAR Results from the RHIC Beam Energy Scan-I, Nucl. Phys. A 904-905 (2013), 256c–263c https://doi.org/10.1016/j.nuclphysa.2013.01.070arXiv:1211.1350 [nucl-ex]

  15. L. Adamczyk et al. [STAR], Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 964, 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904arXiv:1701.07065 [nucl-ex]

  16. F. Becattini, J. Manninen, M. Gazdzicki, Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions. Phys. Rev. C 73, 044905 (2006). https://doi.org/10.1103/PhysRevC.73.044905. arXiv:hep-ph/0511092 [hep-ph]

    Article  ADS  Google Scholar 

  17. J. Cleymans, K. Redlich, Chemical and thermal freezeout parameters from 1-A/GeV to 200-A/GeV. Phys. Rev. C 60, 054908 (1999). https://doi.org/10.1103/PhysRevC.60.054908. arXiv:nucl-th/9903063 [nucl-th]

    Article  ADS  Google Scholar 

  18. A. Andronic, P. Braun-Munzinger, J. Stachel, Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 772, 167–199 (2006). https://doi.org/10.1016/j.nuclphysa.2006.03.012. arXiv:nucl-th/0511071 [nucl-th]

    Article  ADS  Google Scholar 

  19. E. Laermann, O. Philipsen, The Status of lattice QCD at finite temperature. Ann. Rev. Nucl. Part. Sci. 53, 163–198 (2003). https://doi.org/10.1146/annurev.nucl.53.041002.110609. arXiv:hep-ph/0303042 [hep-ph]

    Article  ADS  Google Scholar 

  20. Q. Wang, F.H. Liu, K.K. Olimov, Initial-state temperature of light meson emission source from squared momentum transfer spectra in high-energy collisions. Front. Phys. 9, 792039 (2021). https://doi.org/10.3389/fphy.2021.792039. arXiv:2111.04486 [hep-ph]

    Article  Google Scholar 

  21. Q. Wang, F.H. Liu, K.K. Olimov, Initial- and final-state temperatures of emission source from differential cross-section in squared momentum transfer in high-energy collisions. Adv. High Energy Phys. 2021, 6677885 (2021). https://doi.org/10.1155/2021/6677885. arXiv:2104.14271 [hep-ph]

    Article  Google Scholar 

  22. Q. Wang, F.H. Liu, Excitation function of initial temperature of heavy flavor quarkonium emission source in high energy collisions. Adv. High Energy Phys. 2020, 5031494 (2020). https://doi.org/10.1155/2020/5031494. arXiv:2005.04940 [hep-ph]

    Article  Google Scholar 

  23. L.N. Gao, F.H. Liu, B.C. Li, Rapidity dependent transverse momentum spectra of heavy quarkonia produced in small collision systems at the LHC. Adv. High Energy Phys. 2019, 6739315 (2019). https://doi.org/10.1155/2019/6739315. arXiv:1901.05823 [hep-ph]

    Article  Google Scholar 

  24. M. Waqas, L.M. Liu, G.X. Peng, M. Ajaz, A.A.K. Haj Ismail, E.A. Dawi, A.M. Khubrani, Observation of non-homogeneous scenarios for different temperatures in hadron (nucleus)-nucleus collisions at RHIC and LHC energies. Chin. J. Phys. 80, 206–228 (2022). https://doi.org/10.1016/j.cjph.2022.09.016

    Article  Google Scholar 

  25. T. Hirano, K. Tsuda, Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze-out. Phys. Rev. C 66(5), 054905 (2002)

    Article  ADS  Google Scholar 

  26. U. Heinz, G. Kestin, Universal chemical freeze-out as a phase transition signature. arXiv preprint arXiv:nucl-th/0612105 (2006)

  27. P. Braun-Munzinger, Chemical equilibration and the hadron-QGP phase transition. arXiv preprint arXiv:nucl-ex/0007021 (2000)

  28. J. Adam et al. [STAR], Centrality and transverse momentum dependence of \(D^0\)-meson production at mid-rapidity in Au+Au collisions at \({\sqrt{s_{\rm NN}} = {\rm 200\,GeV}}\). Phys. Rev. C 993, 034908, (2019) https://doi.org/10.1103/PhysRevC.99.034908arXiv:1812.10224 [nucl-ex]

  29. M. Ajaz, A.M. Khubrani, M. Waqas, A.A.K. Haj Ismail, E.A. Dawi, Collective properties of hadrons in comparison of models prediction in pp collisions at 7 TeV. Results Phys. 36, 105433 (2022). https://doi.org/10.1016/j.rinp.2022.105433

    Article  Google Scholar 

  30. J. Gu, C. Li, Q. Wang, W. Zhang, H. Zheng, J. Phys. G 49(11), 115101 (2022). https://doi.org/10.1088/1361-6471/ac9074. arXiv:2201.02091 [nucl-th]

    Article  ADS  Google Scholar 

  31. B.C. Li, Y.Z. Wang, F.H. Liu, Formulation of transverse mass distributions in Au–Au collisions at \(\sqrt{s_{NN}}\)=200 GeV/nucleon. Phys. Lett. B 725, 352–356 (2013). https://doi.org/10.1016/j.physletb.2013.07.043. arXiv:1402.6023 [hep-ph]

    Article  ADS  Google Scholar 

  32. J.X. Sun, L.L. Liu, E.Q. Wang, F.H. Liu, Charged particle pseudorapidity distributions in high energy p-anti-p or p–p collisions and the improved multi-source thermal model. Indian J. Phys. 87, 177–184 (2013). https://doi.org/10.1007/s12648-012-0193-0

    Article  ADS  Google Scholar 

  33. M. Waqas, H.M. Chen, G.X. Peng, A.A.K.H. Ismail, M. Ajaz, Z. Wazir, R. Shehzadi, S. Jamal, A. AbdelKader, Study of kinetic freeze-out parameters as a function of rapidity in pp collisions at CERN SPS energies. Entropy 23(10), 1363 (2021). https://doi.org/10.3390/e23101363. arXiv:2109.05831 [hep-ph]

    Article  ADS  Google Scholar 

  34. M. Waqas, G.X. Peng, Z. Wazir, H. Lao, Analysis of kinetic freeze-out temperature and transverse flow velocity in nucleus–nucleus and proton–proton collisions at same center-of-mass energy. Int. J. Mod. Phys. E 30(08), 2150061 (2021). https://doi.org/10.1142/S0218301321500610. arXiv:2107.11613 [hep-ph]

    Article  ADS  Google Scholar 

  35. L.J. Gutay, A.S. Hirsch, C. Pajares, R.P. Scharenberg, B.K. Srivastava, De-Confinement in small systems: clustering of color sources in high multiplicity \({\bar{p}}\)p collisions at \(\sqrt{s}\)= 1.8 TeV. Int. J. Mod. Phys. E 24(12), 1550101 (2015). https://doi.org/10.1142/S0218301315501013. arXiv:1504.08270 [nucl-ex]

    Article  ADS  Google Scholar 

  36. P. Sahoo, S. De, S.K. Tiwari, R. Sahoo, Energy and centrality dependent study of deconfinement phase transition in a color string percolation approach at rhic energies. Eur. Phys. J. A 54(8), 136 (2018). https://doi.org/10.1140/epja/i2018-12571-9. arXiv:1803.08280 [hep-ph]

    Article  ADS  Google Scholar 

  37. R.P. Scharenberg, B.K. Srivastava, C. Pajares, Exploring the initial stage of high multiplicity proton-proton collisions by determining the initial temperature of the quark–gluon plasma. Phys. Rev. D 100(11), 114040 (2019). https://doi.org/10.1103/PhysRevD.100.114040. arXiv:1803.02301 [hep-ph]

    Article  ADS  Google Scholar 

  38. M. Waqas, F.H. Liu, R.Q. Wang, I. Siddique, Eur. Phys. J. A 56(7), 188 (2020). https://doi.org/10.1140/epja/s10050-020-00192-y. arXiv:2007.00825 [hep-ph]

    Article  ADS  Google Scholar 

  39. M. Waqas, F.H. Liu, S. Fakhraddin, M.A. Rahim, Possible scenarios for single, double, or multiple kinetic freeze-out in high energy collisions. Indian J. Phys. 93(10), 1329–1343 (2019). https://doi.org/10.1007/s12648-019-01396-9. arXiv:1806.04312 [nucl-th]

    Article  ADS  Google Scholar 

  40. M. Waqas, G.X. Peng, F.H. Liu, An evidence of triple kinetic freezeout scenario observed in all centrality intervals in Cu–Cu, Au–Au and Pb–Pb collisions at high energies. J. Phys. G 48(7), 075108 (2021). https://doi.org/10.1088/1361-6471/abdd8d. arXiv:2101.07971 [hep-ph]

    Article  ADS  Google Scholar 

  41. H.L. Lao, F.H. Liu, B.C. Li, M.Y. Duan, Kinetic freeze-out temperatures in central and peripheral collisions: which one is larger? Nucl. Sci. Tech. 29(6), 82 (2018). https://doi.org/10.1007/s41365-018-0425-x. arXiv:1703.04944 [nucl-th]

    Article  Google Scholar 

  42. M.S. Abdallah [STAR], et al., \(K*0\) production in Au+Au collisions at sNN=7.7, 11.5, 14.5, 19.6, 27, and 39 GeV from the RHIC beam energy scan. Phys. Rev. C 1073, 034907 (2023). https://doi.org/10.1103/PhysRevC.107.034907. arXiv:2210.02909 [nucl-ex]

  43. J. Cleymans, D. Worku, Relativistic thermodynamics: transverse momentum distributions in high-energy physics. Eur. Phys. J. A 48, 160 (2012). https://doi.org/10.1140/epja/i2012-12160-0. arXiv:1203.4343 [hep-ph]

    Article  ADS  Google Scholar 

  44. E. Schnedermann, J. Sollfrank, U.W. Heinz, Thermal phenomenology of hadrons from 200-A/GeV S+S collisions. Phys. Rev. C 48, 2462–2475 (1993). https://doi.org/10.1103/PhysRevC.48.2462. arXiv:nucl-th/9307020 [nucl-th]

    Article  ADS  Google Scholar 

  45. B.I. Abelev et al. [STAR], Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at s(NN)**(1/2) = 9.2- GeV. Phys. Rev. C 81, 024911 (2010). https://doi.org/10.1103/PhysRevC.81.024911. arXiv:0909.4131 [nucl-ex]

  46. B.I. Abelev et al., Systematic measurements of identified particle spectra in \(p p, d^+\) Au and Au+Au collisions from STAR. Phys. Rev. C 79, 034909 (2009). https://doi.org/10.1103/PhysRevC.79.034909. arXiv:0808.2041 [nucl-ex]

    Article  ADS  Google Scholar 

  47. Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Spectra and radial flow at RHIC with Tsallis statistics in a Blast-Wave description. Phys. Rev. C 79, 051901 (2009). https://doi.org/10.1103/PhysRevC.79.051901. arXiv:0812.1609 [nucl-ex]

    Article  ADS  Google Scholar 

  48. R. Hagedorn, Multiplicities, \(p_T\) distributions and the expected hadron \(\longrightarrow\) quark-gluon phase tranistion. Riv. Nuovo Cimento 6, 1 (1983)

    Article  MathSciNet  Google Scholar 

  49. H. Zheng, L. Zhu, Comparing the Tsallis distribution with and without thermodynamical description in \(p+p\) collisions. Adv. High Energy Phys. 2016, 9632126 (2016). https://doi.org/10.1155/2016/9632126. arXiv:1512.03555 [nucl-th]

    Article  Google Scholar 

  50. P. P. Yang, M. Y. Duan, F. H. Liu, R. Sahoo, Analysis of identified particle transverse momentum spectra produced in pp, p–Pb and Pb–Pb Collisions at the LHC using TP-like function. Symmetry 14(8), 1530 (2022). https://doi.org/10.3390/sym14081530. arXiv:2112.13223 [hep-ph]

    Article  ADS  Google Scholar 

  51. R. Odorico, Does a transverse energy trigger actually trigger on large-PT jets? Phys. Lett. B 118, 151 (1982)

    Article  ADS  Google Scholar 

  52. T. Mizoguchi, M. Biyajima, N. Suzuki, Analyses of whole transverse momentum distributions in p\({{\bar{p}}}\) and pp collisions by using a modified version of Hagedorn’s formula. Int. J. Mod. Phys. A 32, 1750057 (2017)

    Article  ADS  Google Scholar 

  53. G. Arnison et al., Transverse momentum spectra for charged particles at the CERN proton-antiproton collider (UA1 Collaboration). Phys. Lett. B 118, 167 (1982)

    Article  ADS  Google Scholar 

  54. M. Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop, Recent results and open questions on collective type phenomena from A-A to pp collisions. AIP Conf. Proc. 1645, 52 (2015)

    Article  ADS  Google Scholar 

  55. H. Zheng, L.L. Zhu, Comparing the Tsallis distribution with and without tthermodynamical description in p + p collisions. Adv. High Energy Phys. (2016). https://doi.org/10.1155/2016/9632126

    Article  Google Scholar 

  56. B. Abelev et al., Production of \(K^*(892)^0\) and \(\phi (1020)\) in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C 72, 2183 (2012). https://doi.org/10.1140/epjc/s10052-012-2183-y. arXiv:1208.5717 [hep-ex]

    Article  ADS  Google Scholar 

  57. K.K. Olimov, I.A. Lebedev, B.J. Tukhtaev, A.I. Fedosimova, F.H. Liu, S.A. Khudoyberdieva, S.Z. Kanokova, Int. J. Mod. Phys. E 32(12), 2350066 (2023). https://doi.org/10.1142/S0218301323500660

    Article  Google Scholar 

  58. L.L. Li, F.H. Liu, Eur. Phys. J. A 54(10), 169 (2018). https://doi.org/10.3847/1538-4365/aada4a. arXiv:1809.03881 [hep-ph]

    Article  ADS  Google Scholar 

  59. M. Waqas, G.X. Peng, R.Q. Wang, M. Ajaz, A.A.K.H. Ismail, Eur. Phys. J. Plus 136(10), 1082 (2021). https://doi.org/10.1140/epjp/s13360-021-02089-1. arXiv:2110.09505 [nucl-th]

    Article  Google Scholar 

  60. M.A. Stankiewicz, Entropy in the thermal model, arXiv:nucl-th/0509058 [nucl-th]

  61. M. Waqas, B.C. Li, Kinetic freeze-out temperature and transverse flow velocity in Au–Au collisions at RHIC-BES energies. Adv. High Energy Phys. 2020, 1787183 (2020). https://doi.org/10.1155/2020/1787183. arXiv:1909.11339 [hep-ph]

    Article  Google Scholar 

Download references

Acknowledgements

Under grant number BK202313, the Hubei University of Automotive Technology, Shiyan, China, is supporting this work. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia for funding this research work through the project number “-NBU-FFR -2024-2225-03”. We would also like to acknowledge the support of Ajman University Internal Research Grant No. [DRGS Ref. 2023-IRG-HBS-13].

Funding

The funding agencies have no role in the design of the study; in the collection, analysis, or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding authors

Correspondence to Muhammad Waqas or Muhammad Ajaz.

Ethics declarations

Ethical approval

The authors declare that they are in compliance with ethical standards regarding the content of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Ajaz, M., Saidani, T. et al. Initial and final state temperature of \(K^{*0}\) in Beam Energy Scan of Au–Au collisions at RHIC energies. Eur. Phys. J. Plus 139, 415 (2024). https://doi.org/10.1140/epjp/s13360-024-05227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05227-7

Navigation