Skip to main content
Log in

Income inequality analysis through complex network and nonlinear time series approaches: an Econophysics perspective

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work delineates the potential of nonlinear time series, phase portraits, and complex network analyses in investigating and forecasting income inequality, taking India, the world’s most populous country, as an example. The multidimensional Econophysics analysis unravels the correlation of income inequality with gross domestic product (GDP), Gini coefficient, population, and income shares. The Lyapunov exponent (L) and sample entropy (S) analyses indicate the rising income inequality. By segmenting the data into three regions, the L analysis suggests a converging phase portrait and reducing income inequality. Self-similarity and Spearman correlation-based complex network analyses show strong data correlation confirming the results of L and S. The GDP, population, and income shares in region 3 (R3) exhibit a third-order polynomial relation with a high R2 value substantiating the forecast. The increasing GDP, decreasing income inequality, and retarded population growth in R3 suggest a bright future for the Indian economy. The study, thus, highlights the application of time series and complex network analyses in the emerging interdisciplinary field of Econophysics, representing a new frontier for enhancing our understanding of complex economic systems and guiding evidence-based policy interventions, as illustrated by the analysis of income inequality data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source https://wir2022.wid.world/

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The manuscript has associated data in a data repository. [Author’s comment: The link to the data used in the study is cited in the article.]

References

  1. H. Stanley, L.A. Amaral, D. Canning, P. Gopikrishnan, Y. Lee, Y. Liu, Phys. A Stat. Mech. Appl. 269, 156 (1999)

    Article  Google Scholar 

  2. S. Sinha, A. Chatterjee, A. Chakraborti, B.K. Chakrabarti, Econophysics: An Introduction (John Wiley & Sons, Germany, 2010)

    Google Scholar 

  3. E.J. de Area Leão Pereira, M.F. da Silva, H.B.B. Pereira, Phys. A Stat. Mech. Appl. 473, 251 (2017)

    Article  Google Scholar 

  4. A. Shaikh, A. Ragab, Metroeconomica 74, 248 (2023)

    Article  Google Scholar 

  5. T. Kato, Entropy 25, 224 (2023)

    Article  ADS  Google Scholar 

  6. F. Alavi, S. Arif, A. Azmi, Int. J. Emerg. Multidiscip. Phys. Sci. 1, (2023)

  7. N. Leng, J.-C. Li, Phys. A Stat. Mech. Appl. 554, 124663 (2020)

    Article  Google Scholar 

  8. Organisation for Economic Co-operation and Development, OECD Economic Outlook, Interim Report March 2023: A Fragile Recovery (2023). Available at https://www.oecd-ilibrary.org/sites/d14d49eb-en/index.html?itemId=/content/publication/d14d49eb-en. Accessed 20 March 2023

  9. World Bank, Global Economic Prospects, January 2023 (The World Bank, Washington, D.C., 2023) https://doi.org/10.1586/978-1-4648-1906-3. Accessed 20 March 2023

  10. K. Mdingi, S.-Y. Ho, MethodsX 8, 101402 (2021)

    Article  Google Scholar 

  11. A. Renjini, M.S. Swapna, V. Raj, K. Satheesh Kumar, S. Sankararaman, Phys. D Nonlinear Phenom. 433, 133184 (2022)

    Article  Google Scholar 

  12. M.S. Swapna, A. Renjini, V. Raj, S. Sreejyothi, S. Sankararaman, Phys. Eng. Sci. Med. 43, 1339 (2020)

    Article  Google Scholar 

  13. M.S. Swapna, R. Vimal, K. Satheesh Kumar, S. Sankararaman, J. Mol. Liq. 318, 114038 (2020)

    Article  Google Scholar 

  14. P. Gogas, R. Gupta, S. M. Miller, T. Papadimitriou, and G. Sarantitis, SSRN Electron. J. 1 (2015)

  15. M. de Las, N.L. García, J.P.R. Requena, Estud. Econ. Apl. 1, 32 (2019)

    Google Scholar 

  16. M.M. Dubovikov, N.V. Starchenko, Phys. Usp. 54, 754 (2011)

    Article  ADS  Google Scholar 

  17. Y. Zu, Appl. Math. Nonlinear Sci. 8, 2475 (2023)

    Article  Google Scholar 

  18. R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999)

    Article  ADS  Google Scholar 

  19. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  20. L.M. Varela, G. Rotundo, M. Ausloos, J. Carrete, Complexity and Geographical Economics: Topics and Tools (Springer, Cham, 2015), pp.209–245

    Book  Google Scholar 

  21. D. Yang, W.G. Zhao, J. Du, Y. Yang, Technol. Anal. Strateg. Manag. 36, 563 (2024)

    Article  Google Scholar 

  22. L. Taylor, R. Schroeder, E. Meyer, Big Data Soc. 1, 205395171453687 (2014)

    Article  Google Scholar 

  23. B. Quito, M.D.L.C. del Río-Rama, M. Peris-Ortiz, J. Álvarez-García, J. Knowl. Econ. (2023). https://doi.org/10.1007/s13132-023-01373-y

    Article  Google Scholar 

  24. H. Hung, Annu. Rev. Sociol. 47, 349 (2021)

    Article  Google Scholar 

  25. M. Roser, Our World Data (2013) https://ourworldindata.org/global-economic-inequality. Accessed 20 March 2023

  26. A. Berry, F. Bourgulgnon, C. Morrisson, Economic Inequality and Poverty: International Perspectives, 1st edn. (Routledge, New York, 2017)

    Google Scholar 

  27. United Nations, Sustainable Development Goals (2022). https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 20 March 2023

  28. L. Chancel, T. Piketty, E. Saez, G. Zucman, World Inequality Report 2022 (Harvard University Press, 2022)

  29. A. Kaasa, SSRN Electron. J. 18, 1 (2003)

    ADS  Google Scholar 

  30. E. Peterson, Soc. Sci. 6, 147 (2017)

    Article  Google Scholar 

  31. M. Leung, Preuzeto s https://sevenpillarsinstitute.org/causes-economic-inequality/ (17. Svibnja 2020) (2015)

  32. Development O for EC and Confronting the Crisis. OECD Econ Outlook, Novemb 2022. https://www.oecd.org/economic-outlook/november-2022/. Accessed 20 March 2023

  33. International Monetary Fund. World Economic Outlook, October 2022 (2022). https://www.imf.org/external/datamapper/PPPSH@WEO/OEMDC/ADVEC/WEOWORLD. Accessed 20 March 2023

  34. S. Sarkar, B.S. Mehta, Econ. Polit. Wkly. 45 (2010)

  35. L. Chancel, T. Piketty, Rev. Income Wealth 65, S33 (2019)

    Article  Google Scholar 

  36. M. Deogaonkar, Electron. J. Sociol. 11, 25 (2004)

    Google Scholar 

  37. M. Sehrawat, A.K. Giri, Int. J. Soc. Econ. 43, 998 (2016)

    Article  Google Scholar 

  38. T. Agrawal, A. Agrawal, Prog. Dev. Stud. 23, 7 (2023)

    Article  Google Scholar 

  39. Z. Darvas, World Dev. 121, 16 (2019)

    Article  Google Scholar 

  40. A.K. Giri, R. Pandey, G. Mohapatra, J. Asian Financ. Econ. Bus. 8, 0111 (2021)

    Google Scholar 

  41. M. Azam, V. Bhatt, Soc. Indic. Res. 138, 505 (2018)

    Article  Google Scholar 

  42. Affairs D of E and S, Population Division UN. World Population Prospects 2022. 2022 Revision World Population Prospects (2022). https://population.un.org/wpp/. Accessed 20 March 2023

  43. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  44. C. Chen, S. Sun, Z. Cao, Y. Shi, B. Sun, X.D. Zhang, Biol. Methods Protoc. 4, bpz016 (2019)

    Article  Google Scholar 

  45. A.S. da Mata, Braz. J. Phys. 50, 658 (2020)

    Article  ADS  Google Scholar 

  46. C. Shao, P. Cui, P. Xun, Y. Peng, X. Jiang, Open Phys. 16, 1009 (2018)

    Article  Google Scholar 

  47. W.-Y. Zhang, Z.-W. Wei, B.-H. Wang, X.-P. Han, Phys. A Stat. Mech. Appl. 451, 440 (2016)

    Article  Google Scholar 

  48. S. Sankararaman, Chin. Phys. B 31, 088201 (2022)

    Article  ADS  Google Scholar 

  49. C. Perez, R. Germon, Automating Open Source Intelligence, 1st edn. (Elsevier, 2016), pp.103–129

    Book  Google Scholar 

  50. L.D.F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    Article  ADS  Google Scholar 

  51. C.J. Stam, Clin. Neurophysiol. 116, 2266 (2005)

    Article  Google Scholar 

  52. S. Liu, W. Fang, X. Gao, Z. Wang, F. An, S. Wen, Energy 211, 118682 (2020)

    Article  Google Scholar 

  53. T. Roy, Rev. Hist. Económica-J. Iber. Lat. Am. Econ. Hist. 34, 209 (2016)

    Google Scholar 

  54. N.A. Sarma, Staff Pap. Int. Monet. Fund 6, 180 (1958)

    Article  Google Scholar 

  55. A. Kohli, Stud. Comp. Int. Dev. 42, 87 (2007)

    Article  Google Scholar 

  56. A. Gupta, K. Sivaramakrishnan, The State in India after Liberalization, 1st edn. (Routledge, 2010)

    Book  Google Scholar 

  57. A. Panagariya, in Ndia’s China’s Recent Experience with Reform Growth (Procyclicality Financial. Systems in Asia, edited by D. Tseng, W. Cowen (Palgrave Macmillan, Springer, London, 2005)

  58. M.S. Swapna, S. Sreejyothi, V. Raj, S. Sankararaman, Braz. J. Phys. 51, 731 (2021)

    Article  ADS  Google Scholar 

  59. J. Gao, J. Hu, W.-W. Tung, Y. Zheng, Quant. Finance 13, 265 (2013)

    Article  MathSciNet  Google Scholar 

  60. S. Mishra, B.M. Ayyub, Risk Anal. 39, 2160 (2019)

    Article  Google Scholar 

  61. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Phys. D Nonlinear Phenom. 16, 285 (1985)

    Article  ADS  Google Scholar 

  62. J.-P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985)

    Article  ADS  Google Scholar 

  63. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  64. National Statistical Office. Press note on estimates of gross domestic product for the second quarter (July–September) 2022–23. Ministry of Statistics & Programme Implementation (2022). https://pib.gov.in/PressReleasePage.aspx?PRID=1880006. Accessed 20 March 2023

  65. Goldman Sachs, How India could rise to the world’s second-biggest economy (2023) https://www.goldmansachs.com/intelligence/pages/how-india-could-rise-to-the-worlds-second-biggest-economy.html. Accessed 10 April 2024

  66. Ranen Banerjee, India@2047 (2024) https://www.pwc.in/research-and-insights-hub/immersive-outlook/india-at-2047.html. Accessed 10 April 2024

  67. EY India, Multidisciplinary professional services organization (2023) https://www.ey.com/en_in/news/2023/01/ey-projects-india-to-become-a-us-dollor-26-trillion-economy-by-2047-with-a-six-fold-increase-in-per-capita-income-to-us-dollor-15000. Accessed April 10 2024

  68. B. Debroy, Futures 36, 693 (2004)

    Article  Google Scholar 

  69. M.S. Ahluwalia, J. Econ. Perspect. 16, 67 (2002)

    Article  Google Scholar 

  70. N. Bajpai, Metamorphosis 1, 125 (2002)

    Article  Google Scholar 

  71. R. Mohan, Inst. South Asia Stud. Singapore 10, 1 (2006)

    Google Scholar 

  72. World Population Review, Total Population by Country 2023 (2023). https://worldpopulationreview.com/countries. Accessed 21 April 2023

  73. U. Ram, F. Ram, in Oxford Research Encyclopedias Global Public Health (Oxford University Press, 2021). https://doi.org/10.1093/acrefore/9780190632366.013.223

  74. Review 2023 World Population. Average Age by Country 2023 (2023). https://worldpopulationreview.com/country-rankings/median-age. Accessed 25 March 2023

  75. S.A. Dar, D.N.A. Lone, Int. J. Inf. Technol. Comput. Eng. 2, 6 (2022)

    Google Scholar 

  76. A. Khurana, A. Sharma, Int. J. Adv. Res. 4, 500 (2016)

    Google Scholar 

  77. R. Khuntia, Zenith Int. J. Bus. Econ. Manag. Res. 4, 10 (2014)

    Google Scholar 

  78. M.S. Kedar, Int. Res. J. Multidiscip. Stud. 1, 34 (2015)

    Google Scholar 

  79. N. Kshetri, N. Kshetri, Asian. Res. Policy 7, 94 (2016)

    Google Scholar 

  80. B.J. Angell, S. Prinja, A. Gupt, V. Jha, S. Jan, PLOS Med. 16, e1002759 (2019)

    Article  Google Scholar 

  81. S. Srinivasan, Soc. Change 37, 125 (2007)

    Article  Google Scholar 

  82. S. Srinivasan, Public Health India Policy Shifts Trends 37, 342 (2022)

    Google Scholar 

  83. S. Kühner, K. Nakray, J. Asian Public Policy 10, 40 (2017)

    Article  Google Scholar 

  84. N.F. Campos, Y. Kinoshita, IMF Staff. Pap. 57, 326 (2010)

    Article  Google Scholar 

  85. E. Ghani, A.G. Goswami, W.R. Kerr, Econ. J. 126, 317 (2016)

    Article  Google Scholar 

  86. K.S. Varadharajan, T. Thomas, A. Kurpad, Food Nutr. Bull. 35, 253 (2014)

    Article  Google Scholar 

  87. World Bank, India’s Poverty Profile (2023). https://www.worldbank.org/en/news/infographic/2016/05/27/india-s-poverty-profile. Accessed 20 March 2023

Download references

Acknowledgements

The authors acknowledge the timely support extended by Prof. Anitha, Department of Economics and Prof. K Satheesh Kumar, Department of Futures studies, University of Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

None.

Human and animal rights

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Sankararaman, S. Income inequality analysis through complex network and nonlinear time series approaches: an Econophysics perspective. Eur. Phys. J. Plus 139, 421 (2024). https://doi.org/10.1140/epjp/s13360-024-05219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05219-7

Navigation