Skip to main content
Log in

Structure of nnn/ppp three quasiparticle quadruplets in odd-A nuclei

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present article, we have explored the nuclear structure of 9 three quasiparticle (3qp) quadruplets arising from the coupling of like particles (nnn/ppp) observed in odd-A 179Hf, 175,181Ta, 177,179,183W, 183Re, and 185Os nuclides and also confirmed the configuration assignment to 3qp quadruplets observed in 175,177Ta and 179W nuclides. To accomplish these objectives, we adopted a revised version of semi-empirical model formulation that includes all the necessary physical interactions namely the pairing among nucleons, rotation of even-even core, rotor-particle, particle–particle coupling, irrotational contributions arising from valence nucleons, and residual interactions. These interactions can affect the magnitude of bandhead energies as well as the ordering among different members of given 3qp quadruplet. We obtained an excellent agreement among calculated bandhead energies and corresponding experimental data for all the nine 3qp quadruplets which indicates the versatility and applicability of the present model formulation. Notably, the average deviation in the present model calculations is 110.2 keV, a substantial improvement (> 50%) as compared to the earlier model, which yielded a deviation of 230.3 keV. Inspired from the success of present model calculations, we predicted the bandhead energies of 27 unobserved members of these quadruplets. The validity and reliability of present model calculations are also supported by the fact that the energy ordering among different members of a given 3qp quadruplet satisfies the generalized GM rules except 5/2[402]π ⊗ 7/2[404]π ⊗ 9/2[514]π 3qp configuration observed in 175Ta and 181Ta nuclides. The observed violation of generalized GM rules in 5/2[402]π ⊗ 7/2[404]π ⊗ 9/2[514]π configuration in both nuclides (175Ta and 181Ta) is attributed to the rotational perturbation that especially affects the locations of high-K members of a given 3qp quadruplets and in the present case above said rotational perturbation reverse the energy ordering of Kπ = 11/2 and Kπ = 21/2 bandheads. We also demonstrated the application of the present semi-empirical model calculations in the configuration assignment to 3qp states observed in odd-A nuclei. We confirmed the configuration assignments of energy states at 1551.7 keV, 1522.9 keV, and 1632.0 keV observed in 175Ta, 177Ta, and 179W nuclides, respectively, as Kπ = 17/2+: 7/2[404]π ⊗ 9/2[514]π ⊗ 1/2[541]π, Kπ = 17/2+:9/2[514]π ⊗ 1/2[521]ν ⊗ 7/2[633]ν and Kπ = 21/2+: 9/2[624]ν ⊗ 7/2[514]ν ⊗ 5/2[512]ν 3qp configurations from various probable configurations suggested in literature due to lack of experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. S.T. Belyaev, Quantum chaos and complexity in nuclei. K Dan Vidensk Selsk. Mat. Fys. Medd. 11, 31 (1959)

    Google Scholar 

  2. A.B. Migdal, Superfluidity and the moments of inertia of nuclei. Nucl. Phys. 13(5), 655–674 (1959). https://doi.org/10.1016/0029-5582(59)90264-0

    Article  MathSciNet  Google Scholar 

  3. S. Åberg, An investigation of yrast traps in some prolate Hf isotopes. Nucl. Phys. A 306(1–2), 89–100 (1978). https://doi.org/10.1016/0375-9474(78)90313-5

    Article  Google Scholar 

  4. D.G. Madland, J.R. Nix, New model of the average neutron and proton pairing gaps. Nucl. Phys. A 476(1), 1–38 (1988). https://doi.org/10.1016/0375-9474(88)90370-3

    Article  Google Scholar 

  5. K. Jain, A.K. Jain, Empirical model for three-quasiparticle states. Phys. Rev. C 45(6), 3013 (1992). https://doi.org/10.1103/PhysRevC.45.3013

    Article  MathSciNet  Google Scholar 

  6. C.J. Gallagher Jr., S.A. Moszkowski, Coupling of angular momenta in odd-odd nuclei. Phys. Rev. 111(5), 1282 (1958). https://doi.org/10.1103/PhysRev.111.1282

    Article  Google Scholar 

  7. C.J. Gallagher Jr., Coupling of angular momenta in two-particle states in deformed even-even nuclei. Phys. Rev. 126(4), 1525 (1962). https://doi.org/10.1103/PhysRev.126.1525

    Article  Google Scholar 

  8. N.D. Newby Jr., Selection rules in the odd-even shift of certain nuclear rotational bands. Phys. Rev. 125(6), 2063 (1962). https://doi.org/10.1103/PhysRev.125.2063

    Article  Google Scholar 

  9. K. Jain, P.M. Walker, N. Rowley, Residual interactions in multi-quasiparticle states. Phys. Lett. B 322(1–2), 27–32 (1994). https://doi.org/10.1016/0370-2693(94)90486-3

    Article  Google Scholar 

  10. S. Singh, S.S. Malik, A.K. Jain, B. Singh, Table of three-quasiparticle rotational bands in deformed nuclei, 153⩽ A⩽ 187. At. Data Nucl. Data Tables 92(1), 1–46 (2006). https://doi.org/10.1016/j.adt.2005.08.001

    Article  Google Scholar 

  11. M. Kaur, S. Kumar, S. Singh, J Singh, A. K. Jain, Compilation of three quasiparticle quadruplets in deformed nuclei (2024) [Unpublished Work]

  12. S. Kumar, M. Kaur, S. Singh, J. Singh, A.K. Jain, Bandhead energies of npp/pnn three-quasiparticle quadruplets. Universe 9(2), 91 (2023). https://doi.org/10.3390/universe9020091

    Article  Google Scholar 

  13. S.M. Mullins, G.D. Dracoulis, A.P. Byrne, T.R. McGoram, S. Bayer, R.A. Bark, F.G. Kondev, Rotational and intrinsic states above the Kπ= 25/2, T1/2= 25 day isomer in 179Hf. Phys. Rev. C 61(4), 044315 (2000). https://doi.org/10.1103/PhysRevC.61.044315

    Article  Google Scholar 

  14. F.G. Kondev, G.D. Dracoulis, A.P. Byrne, M. Dasgupta, T. Kibédi, G.J. Lane, Intrinsic states and rotational bands in 175Ta. Nucl. Phys. A 601(2), 195–233 (1996). https://doi.org/10.1016/0375-9474(96)00017-6

    Article  Google Scholar 

  15. T.R. Saitoh, N. Hashimoto, G. Sletten, R.A. Bark, S. Törmänen, M. Bergström, P.G. Varmette, Rotational bands in 181Ta. Eur. Phys. J. A-Hadrons Nuclei 3, 197–199 (1998). https://doi.org/10.1007/s100500050166

    Article  Google Scholar 

  16. T. Shizuma, G. Sletten, R.A. Bark, I.G. Bearden, S. Leoni, M. Mattiuzzi, S. Mitarai, S.W. Ødegård, S. Skoda, K. Strähle, J. Wrzesinski, Y.R. Shimizu, Multi-quasiparticle states and K-forbiddenness in 177W. Nucl. Phys. A 626(3), 760–798 (1997). https://doi.org/10.1016/S0375-9474(97)00585-X

    Article  Google Scholar 

  17. P.M. Walker, G.D. Dracoulis, A.P. Byrne, B. Fabricius, T. Kibédi, A.E. Stuchbery, N. Rowley, Multi-quasiparticle and rotational structures in 179W: fermi alignment, the K-selection rule and blocking. Nucl. Phys. A 568(2), 397–444 (1994). https://doi.org/10.1016/0375-9474(94)90209-7

    Article  Google Scholar 

  18. T.R. Saitoh, N. Saitoh-Hashimoto, G. Sletten, R.A. Bark, M. Bergström, P. Regan, S. Törmänen, P.G. Varmette, P.M. Walker, C. Wheldon, Collective and intrinsic structures in 183W. Nucl. Phys. A 660(2), 171–196 (1999). https://doi.org/10.1016/S0375-9474(99)00381-4

    Article  Google Scholar 

  19. C.S. Purry, P.M. Walker, G.D. Dracoulis, S. Bayer, A.P. Byrne, T. Kibedi, F.R. Xu, Rotational and multi-quasiparticle excitations in 183Re. Nucl. Phys. A 672(1–4), 54–88 (2000). https://doi.org/10.1016/S0375-9474(99)00832-5

    Article  Google Scholar 

  20. T. Shizuma, S. Mitarai, G. Sletten, R.A. Bark, N.L. Gjørup, H.J. Jensen, Y.R. Shimizu, High-spin structure in 185Os. Phys. Rev. C 69(2), 024305 (2004). https://doi.org/10.1103/PhysRevC.69.024305

    Article  Google Scholar 

  21. M. Dasgupta, G.D. Dracoulis, P.M. Walker, A.P. Byrne, T. Kibedi, F.G. Kondev, P.H. Regan, Competition between high-K states and rotational structures in 177Ta. Phys. Rev. C 61(4), 044321 (2000). https://doi.org/10.1103/PhysRevC.61.044321

    Article  Google Scholar 

  22. S. Singh, High spin features of odd-a nuclei using three quasiparticle plus rotor model (Doctoral dissertation, Guru Nanak Dev University, Amritsar) (2007)

  23. S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, B. Nilsson, On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131(1), 1–66 (1969). https://doi.org/10.1016/0375-9474(69)90809-4

    Article  Google Scholar 

  24. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, The AME2016 atomic mass evaluation. Chin. Phys. C 41(030003), 1674–1137 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

    Article  Google Scholar 

  25. A.K. Jain, R.K. Sheline, P.C. Sood, K. Jain, Intrinsic states of deformed odd-A nuclei in the mass regions (151≤ A≤ 193) and (A≥ 221). Rev. Mod. Phys. 62(2), 393 (1990). https://doi.org/10.1103/RevModPhys.62.393

    Article  Google Scholar 

  26. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM (2012). At. Data Nucl. Data Tables 109, 1–204 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  Google Scholar 

  27. Evaluated Nuclear Structure and Decay Data File (ENDSF) database. www.nndc.bnl.gov (2023)

  28. D.E. Archer, M.A. Riley, T.B. Brown, J. Döring, D.J. Hartley, G.D. Johns, Y. Sun, Rotational structures in 177Ta. Phys. Rev. C 52(3), 1326 (1995). https://doi.org/10.1103/PhysRevC.52.1326

    Article  Google Scholar 

  29. F. Bernthal, B.B. Back, O. Bakander, J. Borggreen, J. Pedersen, G. Sletten, R. Lieder, Connection between backbending and high-spin isomer decay in 179W. Phys. Lett. B 74(3), 211–214 (1978). https://doi.org/10.1016/0370-2693(78)90555-5

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Akal University, Talwandi Sabo and DAE-BRNS, Government of India (Grant No. 36(6)/14/60/2016-BRNS/36145) is gratefully acknowledged.

Funding

The funding was provided by UGC-DAE Consortium for Scientific Research, University Grants Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Kumar, S., Singh, S. et al. Structure of nnn/ppp three quasiparticle quadruplets in odd-A nuclei. Eur. Phys. J. Plus 139, 417 (2024). https://doi.org/10.1140/epjp/s13360-024-05211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05211-1

Navigation