Skip to main content
Log in

Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic–quintic nonlinear Schrödinger equations with self-steepening

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical model into a homogeneous system consisting of two coupled CQNLS equations that satisfy integrable constraints. By utilizing the vector first- and second-order rogue wave solutions of the later equations, we obtain various inhomogeneous optical rogue waves: bright-bright, dark-bright, bright-bright doublet, quartet, and sextet for the considered system. The dynamical characteristics of these solutions are controlled by appropriately configuring the structural parameters in the derived solutions. Our investigation delves into the intricate features of these inhomogeneous vector optical rogue waves, with a particular focus on the effects of three longitudinally varying distinct dispersion parameters, namely exponential, kink-like and periodic. Throughout our study, we observe a wide spectrum of notable nonlinear phenomena in the intensity profiles of vector inhomogeneous rogue waves. These phenomena encompass deformation, enhancement, compression, stretching, suppression, and breathing behavior. The insights gained from this research hold significant promise for advancing the field of nonlinear optics, particularly in the realm of experimental investigations involving vector optical rogue waves in inhomogeneous birefringent fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No data were used for the research described in the article.

References

  1. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  2. K. Porsezian, V.C. Kuriakose, Optical Solitons: Theoretical and Experimental Challenges (Springer, New York, 2003)

    Book  Google Scholar 

  3. J.M. Dudley, C. Finot, G. Genty, R. Taylor, Fifty years of fiber solitons. Opt. Photon. News 34(5), 26 (2023)

    Article  Google Scholar 

  4. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  5. N.M. Musammil, K. Porsezian, K. Nithyanandan, P.A. Subha, P. Tchofo Dinda, Ultrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficient. Opt. Fiber Technol. 37, 11–20 (2017)

    Article  ADS  Google Scholar 

  6. X. Lü, W.X. Ma, J. Yu, F.H. Lin, C.M. Khalique, Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 82, 1211 (2015)

    Article  MathSciNet  Google Scholar 

  7. A. Das, B. Karmakar, A. Biswas et al., Chirped periodic waves and solitary waves for a generalized derivative resonant nonlinear Schrödinger equation with cubic-quintic nonlinearity. Nonlinear Dyn. 111, 15347–15371 (2023)

    Article  Google Scholar 

  8. E. Kengne, Chirped nonlinear waves in the cubic-quintic distributed nonlinear Schrödinger equation with external trap, self-steepening and self-frequency shift. Phys. Lett. A 475, 128836 (2023)

    Article  Google Scholar 

  9. E. Kengne, W.M. Liu, Modulational instability and sister chirped femtosecond modulated waves in a nonlinear Schrödinger equation with self-steepening and self-frequency shift. Commun. Nonlinear Sci. Numer. Simul. 108, 106240 (2022)

    Article  Google Scholar 

  10. A. Goyal, R. Gupta, C.N. Kumar, T.S. Raju, Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84, 063830 (2011)

    Article  ADS  Google Scholar 

  11. H. Triki, A. Biswas, D. Milović, M. Belic, Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities. Opt. Commun. 366, 362–369 (2016)

    Article  ADS  Google Scholar 

  12. W.P. Hong, Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms. Opt. Commun. 194, 217 (2001)

    Article  ADS  Google Scholar 

  13. C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao, Y. Nie, Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B 19, 369–375 (2002)

    Article  ADS  Google Scholar 

  14. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265 (2004)

    Article  ADS  Google Scholar 

  15. A. Muniyappan, A. Suruthi, B. Monisha et al., Dromion-like structures in a cubic-quintic nonlinear Schrödinger equation using analytical methods. Nonlinear Dyn. 104, 1533–1544 (2021)

    Article  Google Scholar 

  16. A. Muniyappan, S. Amirthani, P. Chandrika, A. Biswas, Y. Yıldırım, H.M. Alshehri, D.A.A. Maturi, D.H. Al-Bogami, Dark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 255, 168641 (2021)

    Article  ADS  Google Scholar 

  17. G. Djelah, F.I. Ndzana, S. Abdoulkary, A. Mohamadou, Rogue waves dynamics of cubic-quintic nonlinear Schrödinger equation with an external linear potential through a modified Noguchi electrical transmission network. Commun. Nonlin. Sci. Num. Simul. 126, 107479 (2023)

    Article  Google Scholar 

  18. M. Arshad, A.R. Seadawy, D. Lu, Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stability. Optik 138, 40–49 (2017)

    Article  ADS  Google Scholar 

  19. V.N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Article  ADS  Google Scholar 

  20. V.N. Serkin, M. Matsumoto, T.L. Belyaeva, Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers. Opt. Commun. 196, 159 (2001)

    Article  ADS  Google Scholar 

  21. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  ADS  Google Scholar 

  22. S.A. Ponomarenko, G.P. Agrawal, Interactions of chirped and chirp-free similaritons in optical fiber amplifiers. Opt. Express 15, 2963–2973 (2007)

    Article  ADS  Google Scholar 

  23. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 2010(57), 1456–1472 (2010)

    Article  ADS  Google Scholar 

  24. H.G. Luo, D. Zhao, X.G. He, Exactly controllable transmission of nonautonomous optical solitons. Phys. Rev. A 79, 063802 (2009)

    Article  ADS  Google Scholar 

  25. R. Hao, L. Li, Z. Li, R. Yang, G. Zhou, A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245, 383–390 (2005)

    Article  ADS  Google Scholar 

  26. E. Kengne, A. Lakhssassi, W.M. Liu, Non-autonomous solitons in inhomogeneous nonlinear media with distributed dispersion. Nonlinear Dyn. 97, 449–469 (2019)

    Article  Google Scholar 

  27. J.D. He, J.F. Zhang, M.Y. Zhang, C.Q. Dai, Analytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 285, 755–760 (2012)

    Article  ADS  Google Scholar 

  28. F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  ADS  Google Scholar 

  29. S. Chen, D. Mihalache, Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A: Math. Theor. 48, 215202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Zhao, B. Guo, L. Ling, High-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II. J. Math. Phys. 57, 043508 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. N. Vishnu Priya, M. Senthilvelan, M. Lakshmanan, Dark solitons, breathers and rogue wave solutions of the coupled generalized nonlinear Schröinger equations. Phys. Rev. E 89, 062901 (2014)

    Article  ADS  Google Scholar 

  32. S.X. Yang, Y.F. Wang, X. Zhang, Dynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic-quintic nonlinear terms in optical fibers. Nonlinear Dyn. 111, 17439–17454 (2023)

    Article  Google Scholar 

  33. X.W. Yan, J. Zhang, Coupled cubic-quintic nonlinear Schrödinger equation: novel bright-dark rogue waves and dynamics. Nonlinear Dyn. 100, 3733–3743 (2020)

    Article  Google Scholar 

  34. K. Manikandan, P. Muruganandam, M. Senthilvelan, M. Lakshmanan, Manipulating localized matter waves in multicomponent Bose–Einstein condensates. Phys. Rev. E 93, 032212 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. K. Sakkaravarthi, T. Kanna, R. Babu Mareeswaran, Higher-order optical rogue waves in spatially inhomogeneous multimode fiber. Physica D 435, 133285 (2022)

    Article  MathSciNet  Google Scholar 

  36. J. Chai, B. Tian, H.P. Chai, Y.Q. Yuan, Lax pair and vector solitons for a variable-coefficient coherently-coupled nonlinear Schrödinger system in the nonlinear birefringent optical fiber. J. Electromag. Waves Appl. 31, 1363–1375 (2017)

    Article  ADS  Google Scholar 

  37. Y. Zhang, X.J. Nie, Rogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Lett. A 378, 191–197 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. W.R. Sun, D.Y.L. Wen-Rong, X.Y. Xie, Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers. Chaos 27, 043114 (2017)

    Article  ADS  Google Scholar 

  39. Y. Ye, L. Bu, W. Wang, S. Chen, F. Baronio, D. Mihalache, Peregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equation. Front. Phys. 8, 596950 (2020)

    Article  Google Scholar 

  40. Y. Ye, J. Liu, L. Bu, C. Pan, S. Chen, D. Mihalache, Rogue waves and modulation instability in an extended Manakov system. Nonlinear Dyn. 102, 1801–1812 (2020)

    Article  Google Scholar 

  41. J. Wu, Integrability aspects and multi-soliton solutions of a new coupled Gerdjikov–Ivanov derivative nonlinear Schrödinger equation. Nonlinear Dyn. 96, 789–800 (2019)

    Article  Google Scholar 

  42. T. Ji, Y. Zhai, Soliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation. Nonlinear Dyn. 101, 619–631 (2020)

    Article  Google Scholar 

  43. F.H. Qi, H.M. Ju, X.H. Meng, J. Li, Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics. Nonlinear Dyn. 77, 1331–1337 (2014)

    Article  Google Scholar 

  44. B.Q. Mao, Y.T. Gao, Y.J. Feng, X. Yu, Nonautonomous solitons for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger equations with external potentials in the non-Kerr fibre. Zeitschrift für Naturforschung A 70, 985–994 (2015)

    Article  ADS  Google Scholar 

  45. J. Chai, B. Tian, H.L. Zhen, Bright and dark solitons and Bäcklund transformations for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiber. Phys. Scr. 90, 045206 (2015)

    Article  ADS  Google Scholar 

  46. J. Chai, B. Tian, Y.F. Wang, Mixed-type vector solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiber. Physica A 434, 296–304 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. F.H. Qi, X.G. Xu, P. Wang, Rogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients. Appl. Math. Lett. 54, 60–65 (2016)

    Article  MathSciNet  Google Scholar 

  48. M.X. Chu, B. Tian B, Y.Q. Yuan et al., Bilinear forms and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in a twin-core optical fiber or non-Kerr medium. Commun. Theor. Phys. 71, 1393 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. D.Y. Yang, B. Tian, Q.X. Qu et al., Darboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Phys. Scr. 96, 045210 (2021)

    Article  ADS  Google Scholar 

  50. M. Wang, B. Tian, Darboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Wave. Random Complex (2022). https://doi.org/10.1080/17455030.2021.1986649

    Article  Google Scholar 

  51. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)

    Google Scholar 

  52. M. Onorato, S. Resitori, F. Baronio, Rogue and Shock Waves in Nonlinear Dispersive Media (Springer, New York, 2016)

    Book  Google Scholar 

  53. P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (Springer, Berlin, 2008)

    Book  Google Scholar 

  54. M. Leonetti, C. Conti, Observation of three dimensional optical rogue waves through obstacles. Appl. Phys. Lett. 106, 254103 (2015)

    Article  ADS  Google Scholar 

  55. A. Chowdury, W. Chang, M. Battiato, Higher-order rogue-wave fission in the presence of self-steepening and Raman self-frequency shift. Phys. Rev. A 107, 053507 (2023)

    Article  ADS  Google Scholar 

  56. M. Tlidi, M. Taki, Rogue waves in nonlinear optics. Adv. Opt. Photon. 14, 87–147 (2022)

    Article  Google Scholar 

  57. S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee, Y.S. Kivshar, Nonlinear switching and solitons in \(\cal{PT}\)-symmetric photonic systems. Laser Photon. Rev. 10, 177–213 (2016)

    Article  ADS  Google Scholar 

  58. P. Mu, Y. Huang, P. Zhou, Y. Zeng, Q. Fang, R. Lan, P. He, X. Liu, G. Guo, X. Liu, N. Li, Extreme events in two laterally-coupled semiconductor lasers. Opt. Express 30, 29435–29448 (2022)

    Article  ADS  Google Scholar 

  59. X.Z. Li, Z.Y. Zhao, X.Q. Zhou, Y. Gu, X. Han, M. Zhao, Rogue wave generation using a chaotic semiconductor laser with energy redistribution. Opt. Lett. 48, 3523–3526 (2023)

    Article  ADS  Google Scholar 

  60. K. Manikandan, J.B. Sudharsan, Manipulating two-dimensional solitons in inhomogeneous nonlinear Schrödinger equation with power-law nonlinearity under \(\cal{PT}\)-symmetric Rosen–Morse and hyperbolic Scarff-II potentials. Optik 256, 168703 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.M, K.M and A.M gratefully acknowledge the Centre for Computational Modeling, Chennai Institute of Technology, India, vide funding number CIT/CCM/2024/RP-017. KM is also supported by the Science and Engineering Research Board (SERB), Govt. of India, through MATRICS research grant (No. MTR/2023/000921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Manikandan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manigandan, M., Manikandan, K., Muniyappan, A. et al. Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic–quintic nonlinear Schrödinger equations with self-steepening. Eur. Phys. J. Plus 139, 405 (2024). https://doi.org/10.1140/epjp/s13360-024-05205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05205-z

Navigation