Skip to main content
Log in

Dosimetric evaluation of light ion beams for spatially fractionated radiation therapy: a Geant4 Monte Carlo study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Spatially fractionated radiation therapy (SFRT) is an approach that spares healthy tissue compared to conventional radiation therapy. Light ions have also more advantages over heavy charged particles and X-ray beams including physical and radiobiological aspects. The composition of SFRT, particularly minibeam radiation therapy (MBRT), with these privileges could improve the therapeutic index. Monte Carlo simulations were performed by Geant4 (Geant4-11.0.1) to evaluate the radiation of broad beam, single, and arrays of proton and light ion minibeams in a water phantom. Several minibeam sizes and center-to-center (ctc) distances were selected. The contribution of different secondary species, peak and valley doses, peak-to-valley dose ratio (PVDR), and Bragg peak-to-entrance dose ratio (BEDR) was studied. Light ion minibeams have higher PVDR in normal tissues, more BEDR, and even were broadened more slowly compared to protons in same ctcs. Reduced lateral scattering for heavier ions than protons creates sharper peaks and lower valley doses. A higher ctc (3.5 mm) can enhance normal tissue-sparing due to its higher PVDR and cause lower contribution of secondary fragments, but dose conformity is more complicated in the target region for heavier ions. This non-uniformity can be reduced when ctc decreases (1.2 mm), while perfect normal tissue-sparing could not be achieved. Although the contribution of nuclear products is enhanced with atomic number of incident ions, dominant dose deposition occurs at deeper depths in valleys. These results highlight that light ions fulfill advantageous dose profiles and might be good candidates for MBRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The data sets generated during the present study are available from the corresponding author upon reasonable request. The manuscript has associated data in a data repository.

References

  1. M. Sammer, C. Greubel, S. Girst, G. Dollinger, Optimization of beam arrangements in proton minibeam radiotherapy by cell survival simulations. Med. Phys. 44(11), 6096–6104 (2017). https://doi.org/10.1002/mp.12566

    Article  Google Scholar 

  2. L. De Marzi, C. Nauraye, P. Lansonneur et al., Spatial fractionation of the dose in proton therapy: proton minibeam radiation therapy. Cancer Radiother. 23(6–7), 677–681 (2019). https://doi.org/10.1016/j.canrad.2019.08.001

    Article  Google Scholar 

  3. S. Keshmiri, S. Brocard, R. Serduc, J.F. Adam, A high-resolution dose calculation engine for X-ray microbeams radiation therapy. Med. Phys. 49(6), 3999–4017 (2022). https://doi.org/10.1002/mp.15637

    Article  Google Scholar 

  4. S. Bartzsch, S. Corde, J.C. Crosbie, L. Day et al., Technical advances in X-ray microbeam radiation therapy. Phys. Med. Biol. 65(2), 02TR01 (2020). https://doi.org/10.1088/1361-6560/ab5507

    Article  Google Scholar 

  5. R. Ortiz, R. Belshi, L. De Marzi, Y. Prezado, Proton minibeam radiation therapy for treating metastases: a treatment plan study. Med. Phys. 50(4), 1–11 (2023). https://doi.org/10.1002/mp.16203

    Article  Google Scholar 

  6. T.R. Johnson, A.M. Bassil, N.T. Williams et al., An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys. Med. Biol. 67(4), 045017 (2022). https://doi.org/10.1088/1361-6560/ac508c

    Article  Google Scholar 

  7. X. Wu, M.M. Ahmed, J. Wright et al., On modern technical approaches of three-dimensional high-dose lattice radiotherapy (LRT). Cureus 2(3), e9 (2010). https://doi.org/10.7759/cureus.9

    Article  Google Scholar 

  8. F.A. Dilmanian, T.M. Button, G. Le Duc et al., Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro Oncol. 4(1), 26–38 (2002). https://doi.org/10.1093/neuonc/4.1.26

    Article  Google Scholar 

  9. Y.R. Lawrence, X.A. Li, I. El Naqa et al., Radiation dose–volume effects in the brain. Int. J. Radiat. Oncol. Biol. Phys. 76(3), S20–S27 (2010). https://doi.org/10.1016/j.ijrobp.2009.02.091

    Article  Google Scholar 

  10. T. Schneider, Technical aspects of proton minibeam radiation therapy: minibeam generation and delivery. Phys. Med. 100, 64–71 (2022). https://doi.org/10.1016/j.ejmp.2022.06.010

    Article  Google Scholar 

  11. Y. Prezado, M. Dos Santos, W. Gonzalez et al., Transfer of minibeam radiation therapy into a cost-effective equipment for radiobiological studies: a proof of concept. Sci. Rep. 7(1), 17295 (2017). https://doi.org/10.1038/s41598-017-17543-3

    Article  ADS  Google Scholar 

  12. T. Schneider, D. Malaise, F. Pouzoulet, Y. Prezado, Orthovoltage X-ray minibeam radiation therapy for the treatment of ocular tumours—an in silico evaluation. Cancers 15(3), 679 (2023). https://doi.org/10.3390/cancers15030679

    Article  Google Scholar 

  13. I. Momot, O. Kovalchuk, O. Okhrimenko et al., Shaping and monitoring of the mini-beam structures for the spatially fractionated hadron radiation therapy. Nucl. Phys. At. Energy 17(1), 92–97 (2016). https://doi.org/10.15407/jnpae2016.01.092

    Article  ADS  Google Scholar 

  14. U. Amaldi, S. Braccini, Present challenges in hadrontherapy techniques. Eur. Phys. J. Plus 126(67), 70 (2011). https://doi.org/10.1140/epjp/i2011-11067-y

    Article  Google Scholar 

  15. Y. Prezado, G.R. Fois, Proton-minibeam radiation therapy: a proof of concept. Med. Phys. 40(3), 031712 (2013). https://doi.org/10.1118/1.4791648

    Article  Google Scholar 

  16. O. Zlobinskaya, S. Girst, C. Greubel et al., Reduced side effects by proton microchannel radiotherapy: study in a human skin model. Radiat. Environ. Biophys. 52, 123–133 (2013). https://doi.org/10.1007/s00411-012-0450-9

    Article  Google Scholar 

  17. D. Bolst, S. Guatelli, L. Tran et al., Validation of Geant4 for silicon microdosimetry in heavy ion therapy. Phys. Med. Biol. 65(4), 045014 (2020). https://doi.org/10.1088/1361-6560/ab586a

    Article  Google Scholar 

  18. T. Tsubouchi, T. Henry, A. Ureba et al., Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy. Med. Phys. 45(3), 1210–1221 (2018). https://doi.org/10.1002/mp.12749

    Article  Google Scholar 

  19. I. Martínez-Rovira, W. González, S. Brons, Y. Prezado, Carbon and oxygen minibeam radiation therapy: an experimental dosimetric evaluation. Med. Phys. 44(8), 4223–4229 (2017). https://doi.org/10.1002/mp.12383

    Article  Google Scholar 

  20. C. Guardiola, Y. Prezado, High-energy charged particles for spatially fractionated radiation therapy. Front. Phys. 8, 299 (2020). https://doi.org/10.3389/fphy.2020.00299

    Article  Google Scholar 

  21. I. Martinez-Rovira, S. Brons, Y. Prezado, Hadron minibeam radiation therapy: feasibility study at the Heidelberg Ion-Beam Therapy Center (HIT). Radiother. Oncol. 118, S70–S71 (2016). https://doi.org/10.1016/S0167-8140(16)30144-X

    Article  Google Scholar 

  22. W. González, Y. Prezado, Spatial fractionation of the dose in heavy ions therapy: an optimization study. Med. Phys. 45(6), 2620–2627 (2018). https://doi.org/10.1002/mp.12902

    Article  Google Scholar 

  23. Y. Prezado, R. Hirayama, N. Matsufuji et al., A potential renewed use of very heavy ions for therapy: neon minibeam radiation therapy. Cancers 13(6), 1356 (2021). https://doi.org/10.3390/cancers13061356

    Article  Google Scholar 

  24. T. Tessonnier, A. Mairani, W. Chen et al., Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison. Radiother. Oncol. 13(2), 1–10 (2018). https://doi.org/10.1186/s13014-017-0944-3

    Article  Google Scholar 

  25. T. Schneider, A. Patriarca, Y. Prezado, Improving the dose distributions in minibeam radiation therapy: helium ions vs protons. Med. Phys. 46(8), 3640–3648 (2019). https://doi.org/10.1002/mp.13646

    Article  Google Scholar 

  26. F.A. Dilmanian, J.G. Eley, S. Krishnan, Minibeam therapy with protons and light ions: physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation. Int. J. Radiat. Oncol. Biol. Phys. 92(2), 469–474 (2015). https://doi.org/10.1016/j.ijrobp.2015.01.018

    Article  Google Scholar 

  27. S. Agostinelli, J. Allison, K.A. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  28. P. Arce, D. Bolst, M.C. Bordage et al., Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group. Med. Phys. 48(1), 19–56 (2021). https://doi.org/10.1002/mp.14226

    Article  Google Scholar 

  29. C. Guardiola, C. Peucelle, Y. Prezado, Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy. Med. Phys. 44(4), 1470–1478 (2017). https://doi.org/10.1002/mp.12131

    Article  Google Scholar 

  30. W. González, C. Peucelle, Y. Prezado, Theoretical dosimetric evaluation of carbon and oxygen minibeam radiation therapy. Med. Phys. 44(5), 1921–1929 (2017). https://doi.org/10.1002/mp.12175

    Article  Google Scholar 

  31. C. Peucelle, I. Martínez-Rovira, Y. Prezado, Spatial fractionation of the dose using neon and heavier ions: a Monte Carlo study. Med. Phys. 42(10), 5928–5936 (2015). https://doi.org/10.1118/1.4930960

    Article  Google Scholar 

  32. Y. Prezado, S. Thengumpallil, M. Renier, A. Bravin, X-ray energy optimization in minibeam radiation therapy. Med. Phys. 36(11), 4897–4902 (2009). https://doi.org/10.1118/1.3232000

    Article  Google Scholar 

  33. Y. Prezado, G. Jouvion, C. Guardiola et al., Tumor control in RG2 glioma-bearing rats: a comparison between proton minibeam therapy and standard proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 104(2), 266–271 (2019). https://doi.org/10.1016/j.ijrobp.2019.01.080

    Article  Google Scholar 

Download references

Funding

There is no funding available for the publication of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Ghasemizad or Azam Zabihi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabnejad, M., Ghasemizad, A. & Zabihi, A. Dosimetric evaluation of light ion beams for spatially fractionated radiation therapy: a Geant4 Monte Carlo study. Eur. Phys. J. Plus 139, 365 (2024). https://doi.org/10.1140/epjp/s13360-024-05162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05162-7

Navigation