Skip to main content
Log in

Sheath structure behavior in collisional non-extensive plasma with negative ions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper numerically investigates the sheath structure in a collisional electronegative plasma in the presence of non-zero ion source term. The plasma sheath contains non-extensively distributed electrons, fluid positive ions with finite temperature, and Boltzmann-distributed negative ions. Using the Sagdeev potential method, a modified Bohm sheath criterion is derived to obtain the ion velocity at the sheath entrance that satisfies the sheath formation condition. The impact of the main parameters like electronegativity D, non-extensivity q, ionization frequency \(\updelta\) and collision frequency \({\alpha }\) on the sheath characteristics has been examined. The requirement of positive ion velocity to enter the sheath is found to decrease with the increment of \({\alpha }\) and \(\updelta\). Moreover, it is seen that as q, D, \(\updelta\) and \({\alpha }\) increase, the normalized electric potential rapidly rises, the peak amplitude of the space charge density increases, and the sheath thickness significantly decreases. Furthermore, as D decreases, the effect of q, \(\updelta\) and \({\alpha }\) on the sheath electric potential and the space charge density becomes more important. This study may be useful in various technological applications, including plasma-based surface treatments, plasma etching, and plasma cleaning. This is particularly relevant in the microelectronic and semiconductor industries for manufacturing electronic devices and integrated circuits. Additionally, it could contribute to the enhancement and advancement of techniques in fusion energy research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: The data are available from the corresponding author on reasonable request].

References

  1. R. Dhawan, H.K. Malik, Vacuum 177, 109354 (2020)

    Article  ADS  Google Scholar 

  2. R. Dhawan, H.K. Malik, J. Theor. Appl. Phys. 14, 121 (2020)

    Article  ADS  Google Scholar 

  3. T. Ibehej, R. Hrach, Vacuum 86, 1220 (2012)

    Article  ADS  Google Scholar 

  4. T. Makabe, Z.L. Petrovic, Plasma Electronics: Applications in Microelectronic Device Fabrication (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  5. H. Abe, M. Yoneda, N. Fujiwara, Jpn. J. Appl. Phys. 47, 1435 (2008)

    Article  ADS  Google Scholar 

  6. D.R. Borgohain, K. Saharia, Phys. Plasmas 25, 032122 (2018)

    Article  ADS  Google Scholar 

  7. D.R. Borgohain, K. Saharia, Plasma Phys. Rep. 44(1), 137 (2018)

    Article  ADS  Google Scholar 

  8. K. Annou, N. Saoula, R. Tadjine, Int. J. Eng. Res. Technol. 2, 882 (2013)

    Google Scholar 

  9. R. Hatada, S. Flege, A. Bobrich, W. Ensinger, K. Baba, Surf. Coat. Technol. 256, 23 (2014)

    Article  Google Scholar 

  10. K. Shibata, H. Ito, N. Yugami, T. Miyazaki, Y. Nishida, Thin Solid Films 386, 291 (2001)

    Article  ADS  Google Scholar 

  11. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, London, 2005)

    Book  Google Scholar 

  12. D. Dorranian, Z. Abedini, A. Hojabri, M. Ghoranneviss, J. Non-Oxide Glasses 1(3), 217 (2009)

    Google Scholar 

  13. M. Jafari, D. Dorranian, J. Theor. Appl. Phys. 5(2), 59 (2011)

    Google Scholar 

  14. O. Singh, P. Dahiya, H.K. Malik, P. Kumar, V. Singh, Appl. Sci. Lett. 2, 37 (2016)

    Article  Google Scholar 

  15. K.G. Kostov, M. Machida, V. Prysiazhnyi, R.Y. Honda, Plasma Sources Sci. Technol. 24, 25038 (2015)

    Article  Google Scholar 

  16. K. Yasserian, M. Aslaninejad, Eur. Phys. J. D 67, 161 (2013)

    Article  ADS  Google Scholar 

  17. M.M. Hatami, B. Shokri, A.R. Niknam, Phys. Plasmas 15, 123501 (2008)

    Article  ADS  Google Scholar 

  18. R. Moulick, M.K. Mahanta, K.S. Goswami, Phys. Plasmas 20, 094501 (2013)

    Article  ADS  Google Scholar 

  19. K. Yasserian, M. Aslaninejad, Phys. Plasmas 19, 73507 (2012)

    Article  Google Scholar 

  20. R. Paul, S. Adhikari, R. Moulick, S.S. Kausik, B.K. Saikia, Phys. Plasmas 27, 063520 (2020)

    Article  ADS  Google Scholar 

  21. Z. Kiran, H.A. Shah, M.N.S. Qureshi, G. Murtaza, Solar Phys. 236, 167 (2006)

    Article  ADS  Google Scholar 

  22. A. Luque, H. Schamel, Phys. Rep. 415, 261 (2005)

    Article  ADS  Google Scholar 

  23. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992)

    Article  ADS  Google Scholar 

  24. M.M. Hatami, Phys. Plasmas 22, 013508 (2015)

    Article  ADS  Google Scholar 

  25. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  26. C. Tsallis, S.F. Institute, Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  27. A. Asserghine, M. El Kaouini, H. Chatei, Mater. Today Proc. 24, 24 (2020)

    Article  Google Scholar 

  28. M. El Bojaddaini, H. Chatei, Mater. Today Proc. 24, 37–41 (2020)

    Article  Google Scholar 

  29. M. El Bojaddaini, H. Chatei, Eur. Phys. J. Plus 135, 680 (2020)

    Article  Google Scholar 

  30. L. Chen, Y. Yang, Y. An, P. Duan, S. Sun, Z. Cui, Z. Kan, W. Gao, Plasma Sci. Technol. 25, 035003 (2023)

    Article  ADS  Google Scholar 

  31. G. Sharma, R. Paul, K. Deka, R. Moulick, S. Adhikari, S.S. Kausik, B.K. Saikia, AIP Adv. 13, 015011 (2023)

    Article  ADS  Google Scholar 

  32. N.P. Acharya, S. Basnet, R. Khanal, AIP Adv. 13, 105209 (2023)

    Article  ADS  Google Scholar 

  33. Z. Hu, S. Yang, X. Chen, S. Liu, Phys. Plasmas 30, 113701 (2023)

    Article  ADS  Google Scholar 

  34. R. Paul, K. Deka, G. Sharma, R. Moulick, S. Adhikari, S.S. Kausik, B.K. Saikia, Plasma Sci. Technol. 25, 125001 (2023)

    Article  ADS  Google Scholar 

  35. M.M. Hatami, M. Tribeche, IEEE Trans. Plasma Sci. 46, 868 (2018)

    Article  ADS  Google Scholar 

  36. M. Tribeche, L. Djebarni, R. Amour, Phys. Plasmas 17, 042114 (2010)

    Article  ADS  Google Scholar 

  37. T. Gyergyek, J. Kovacic, Phys. Plasmas 22, 043502 (2015)

    Article  ADS  Google Scholar 

  38. N.N. Safa, H. Ghomi, A.R. Niknam, Phys. PlasmasPlasmas 21, 082111 (2014)

    Article  ADS  Google Scholar 

  39. D.R. Borgohain, K. Saharia, K.S. Goswami, Phys. PlasmasPlasmas 23, 122113 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Bojaddaini.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bojaddaini, M., El Kaouini, M. & Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. Eur. Phys. J. Plus 139, 373 (2024). https://doi.org/10.1140/epjp/s13360-024-05112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05112-3

Navigation