Skip to main content
Log in

Asymptotical dynamics of askew-polarized spinning top under the radiation reaction torque

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Rotary dynamics of polarized composite particles as dipole rigid bodies is described by the Euler equations singularly perturbed by the radiation reaction torque. The Schott term is accounted, and the reduction procedure lowering higher derivatives is applied. Asymptotic methods of nonlinear mechanics are used to analyze the rotary dynamics of askew-polarized spinning top. Numerical estimates are relevant to the hypothetical DAST-nanocrystals that might possess a huge dipole moment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data generated and analyzed during of this study are available within this paper and references therein.

References

  1. R. Reimann, M. Doderer, E. Hebestrait, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny, Ghz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett 121(3), 033602 (2018). https://doi.org/10.1103/PhysRevLett.121.033602

    Article  ADS  Google Scholar 

  2. Y. Jin, J. Yan, S.J. Rahman, J. Li, X. Yu, J. Zhang, 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photon. Res. 9(7), 1344–1350 (2021). https://doi.org/10.1364/PRJ.422975

    Article  Google Scholar 

  3. S. Shanbhag, N.A. Kotov, On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: Effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. J. Phys. Chem. B 110(25), 12211–12217 (2006). https://doi.org/10.1021/jp0611119

    Article  Google Scholar 

  4. B. Frka-Petesic, B. Jean, L. Heux, First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhys. Lett. 107(2), 28006 (2014). https://doi.org/10.1209/0295-5075/107/28006

    Article  ADS  Google Scholar 

  5. A. Duviryak, Rotary dynamics of the rigid body electric dipole under the radiation reaction. Eur. Phys. J. D 74(9), 189 (2020). https://doi.org/10.1140/epjd/e2020-100605-3

    Article  ADS  Google Scholar 

  6. A. Duviryak, On the free rotation of a polarized spinning-top as a test of the correct radiation reaction torque. Eur. J. Phys. 43(3), 035203 (2022). https://doi.org/10.1088/1361-6404/ac578c

    Article  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, The Clasical Theory of Fields – Course of theoretical physics, vol. 2, 4th edn. (Butterworth-Heinemann, Oxford, 1987)

    Google Scholar 

  8. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  9. G.A. Schott, Electromagnetic Radiation and the Mechanical Reactions Arising from It (Cambridge University Press, Cambridge, 1912)

    Google Scholar 

  10. Ø. Grøn, The significance of the Schott energy for energy-momentum conservation of a radiating charge obeying the Lorentz-Abraham–Dirac equation. Am. J. Phys. 79(1), 115–122 (2011). https://doi.org/10.1119/1.3488985

    Article  ADS  MathSciNet  Google Scholar 

  11. A.K. Singal, Compatibility of Larmor’s formula with radiation reaction for an accelerated charge. Found. Phys. 46(5), 554–574 (2016). https://doi.org/10.1007/s10701-015-9978-2

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Masuhara, H. Nakanishi, K. Sasaki, Single Organic Nanoparticles (Springer, Berlin, 2003), pp.387–390

    Book  Google Scholar 

  13. R. Bellman, Stability Theory of Differential Equations (McGraw-Hill, New York, 1953)

    Google Scholar 

  14. Y.A. Mitropolsky, Nguyen Van Dao, Applied asymptotic methods in nonlinear oscillations. – Solid Mechanics and Its Applications, vol. 55 (Springer, Dordrecht, 1997)

    Book  Google Scholar 

  15. H. Häffner, T. Beier, S. Djekić, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, T. Valenzuela, G. Werth, Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22(2), 163–182 (2003). https://doi.org/10.1140/epjd/e2003-00012-2

    Article  ADS  Google Scholar 

  16. M. Przybylska, A.J. Maciejewski, Y. Yaremko, Electromagnetic trap for polar particles. New Journal of Physics 22(10), 103047 (2020). https://doi.org/10.1088/1367-2630/abb913

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This study was partially supported by National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askold Duviryak.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duviryak, A. Asymptotical dynamics of askew-polarized spinning top under the radiation reaction torque. Eur. Phys. J. Plus 139, 423 (2024). https://doi.org/10.1140/epjp/s13360-024-05104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05104-3

Navigation