Abstract
We investigate the evolution of a flat Friedmann–Lemaitre–Robertson–Walker (FLRW) model equipped with the matter content induced by the fluid having equation of state depending on the parametric deceleration parameter. We reconstruct the universe which is composed of the dark energy and the non-relativistic matter. The universe transits from the decelerated phase dominated by the non-relativistic matter into an accelerated phase dominated by the dark energy. We single out the physically reasonable cases by checking the compatibility of the model to the observations. The model parameters are constrained by \(\chi ^2\)minimization technique. Based on the best fit values of the model parameters, evolution of the equation of state parameter, energy density, cosmographic parameters along with the role of the energy conditions are investigated in detail. The phantom dominated evolution may be realized during the future in reconstructed universe having the present age compatible with the model dependent estimates and the \(\Lambda \) cold dark matter model, subjected to the best fit values of the model parameters. And, the universe may lead to the little-rip singularity as \(z\rightarrow -1\) in the remote future.
Similar content being viewed by others
Data Availability Statement
This paper has no new associated data. All concepts as well as logical implications are stated in the paper with citations to the data sources.
References
A.G. Riess et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
C.L. Bennett et al., Astrophys. J. Suppl. Ser. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20
N. Aghanim et al., Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910
K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155–228 (2012). https://doi.org/10.1007/s10509-012-1181-8
S. Capozziello, R. D’Agostino, O. Luongo, Int. J. Mod. Phys. D 28, 1930016 (2019). https://doi.org/10.1142/S0218271819300167
S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1–104 (2017). https://doi.org/10.1016/j.physrep.2017.06.001
S.M. Carroll, W.H. Press, E.L. Turner, Annu. Rev. Astron. Astrophy. 30, 499–542 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002435
M. Tegmark et al., Phys. Rev. D 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501
T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010). https://doi.org/10.1103/RevModPhys.82.451
A.R. Lalke, G.P. Singh, A. Singh, Int. J. Geom. Methods Mod. Phys. 20, 2350131 (2023). https://doi.org/10.1142/S0219887823501311
S. Mandal, A. Singh, R. Chaubey, Int. J. Geom. Methods Mod. Phys. 20, 2350084 (2023). https://doi.org/10.1142/S0219887823500846
G. Manna, A. Panda, A. Karmakar, S. Ray, M.R. Islam, Chin. Phys. C 47, 025101 (2023). https://doi.org/10.1088/1674-1137/ac9fbe
R.R. Sahoo, K.L. Mahanta, S. Ray, Universe 8, 573 (2022). https://doi.org/10.3390/universe8110573
N. Ahmed, A. Pradhan, Indian J. Phys. 96, 301–307 (2022). https://doi.org/10.1007/s12648-020-01948-4
A.K. Yadav, G.K. Goswami, A. Pradhan, S.K. Srivastava, Indian J. Phys. 96, 1569–1575 (2022). https://doi.org/10.1007/s12648-021-02071-8
A. Pourbagher, A. Amani, Astrophys. Space Sci. 364, 140 (2019). https://doi.org/10.1007/s10509-019-3631-z
G.P. Singh, A.R. Lalke, N. Hulke, Pramana -J. Phys. 94, 147 (2020). https://doi.org/10.1007/s12043-020-02022-8
S. Capozziello, V.F. Cardone, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 73, 043512 (2006). https://doi.org/10.1103/PhysRevD.73.043512
S. Nojiri, S.D. Odintsov, Phys. Rev. D. 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003
S. Nojiri, S.D. Odintsov, Phys. Lett. B 686, 44–48 (2010). https://doi.org/10.1016/j.physletb.2010.02.017
A.V. Astashenok, S. Nojiri, S.D. Odintsov, R.J. Scherrer, Phys. Lett. B 713, 145–153 (2012). https://doi.org/10.1016/j.physletb.2012.06.017
S. Mandal, A. Singh, R. Chaubey, Eur. Phys. J. Plus 137, 1246 (2022). https://doi.org/10.1140/epjp/s13360-022-03471-3
A. Singh, R. Raushan, R. Chaubey, S. Mandal, K.C. Mishra, Int. J. Geom. Methods Mod. Phys. 19, 2250107 (2022). https://doi.org/10.1142/S0219887822501079
N. Hulke, G.P. Singh, B.K. Bishi, A. Singh, New Astron. 77, 101357 (2020). https://doi.org/10.1016/j.newast.2020.101357
A. Singh, A.K. Shukla, S. Krishnannair, Int. J. Mod. Phys. A 38, 2350169 (2023). https://doi.org/10.1142/S0217751X23501695
A. Singh, Astrophys. Space Sci. 365, 54 (2020). https://doi.org/10.1007/s10509-020-03768-8
G.P. Singh, N. Hulke, A. Singh, Indian J. Phys. 94, 127–141 (2020). https://doi.org/10.1007/s12648-019-01426-6
G.P. Singh, A.R. Lalke, N. Hulke, Braz. J. Phys. 50, 725–743 (2020). https://doi.org/10.1007/s13538-020-00788-1
S.D. Odintsov, V.K. Oikonomou, Class. Quant. Grav. 33, 125029 (2016). https://doi.org/10.1088/0264-9381/33/12/125029
I. Brevik, O. Gron, J. de Haro, S.D. Odintsov, E.N. Saridakis, Int. J. Mod. Phys. D 26, 1730024 (2017). https://doi.org/10.1142/S0218271817300245
A. Singh, Eur. Phys. J. Plus 136, 522 (2021). https://doi.org/10.1140/epjp/s13360-021-01519-4
A.A. Mamon, S. Das, Eur. Phys. J. C 77, 495 (2017). https://doi.org/10.1140/epjc/s10052-017-5066-4
J.-Z. Ma, X. Zhang, Phys. Lett. B 699, 233–238 (2011). https://doi.org/10.1016/j.physletb.2011.04.013
J.C. Wang, X.H. Meng, Eur. Phys. J. C 79, 848 (2019). https://doi.org/10.1140/epjc/s10052-019-7343-x
G.P. Singh, A. Lalke, Indian J. Phys. 96, 4361–4372 (2022). https://doi.org/10.1007/s12648-022-02341-z
A. Singh, Chin. J. Phys. 79, 481–489 (2022). https://doi.org/10.1016/j.cjph.2022.09.009
D. Perkovic, H. Stefancic, Eur. Phys. J. C 80, 629 (2020). https://doi.org/10.1140/epjc/s10052-020-8199-9
A. Singh, Eur. Phys. J. C 83, 696 (2023). https://doi.org/10.1140/epjc/s10052-023-11879-z
M. Visser, Science 276, 88–90 (1997). https://doi.org/10.1126/science.276.5309.88
T. Qiu, Y.-F. Cai, X.-M. Zhang, Mod. Phys. Lett. A 23, 2787–2798 (2008). https://doi.org/10.1142/S0217732308026194
A.A. Sen, R.J. Scherrer, Phys. Lett. B 659, 457–461 (2008). https://doi.org/10.1016/j.physletb.2007.11.070
J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001
G.S. Sharov, V.O. Vasiliev, Math. Model. Geom. 6, 1–20 (2018). https://doi.org/10.26456/mmg/2018-611
D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013). https://doi.org/10.1086/670067
S. Hinton, J. Open Source Softw. 1, 45 (2016). https://doi.org/10.21105/joss.00045
D.M. Scolnic et al., ApJ 859, 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb
G. Ellis, R. Maartens, M. MacCallum, Relativistic Cosmology (Cambridge University Press, Cambridge, 2012). https://doi.org/10.1017/CBO9781139014403
K. Asvesta, L. Kazantzidis, L. Perivolaropoulos, C.G. Tsagas, Mon. Not. R. Astron. Soc. 513, 2394–2406 (2022). https://doi.org/10.1093/mnras/stac922
F.Y. Wang, Z.G. Dai, S. Qi, A &A 507, 53–59 (2009). https://doi.org/10.1051/0004-6361/200911998
S. Pan, A. Mukherjee, N. Banerjee, Mon. Not. R. Astron. Soc. 477, 1189–1205 (2018). https://doi.org/10.1093/mnras/sty755
M.-L. Tong, Y. Zhang, Phys. Rev. D 80, 023503 (2009). https://doi.org/10.1103/PhysRevD.80.023503
O. Akarsu et al., JCAP 01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022
P.H. Frampton, K.J. Ludwick, R.J. Scherrer, Phys. Rev. D 85, 083001 (2012). https://doi.org/10.1103/PhysRevD.85.083001
A. Singh, A. Beesham, N.K. Tripathi, Chin. J. Phys. 81, 125–133 (2023). https://doi.org/10.1016/j.cjph.2022.11.016
Acknowledgements
We are grateful to the honorable reviewer for highlighting different issues which have been helpful in modification of the manuscript during revision process. AL and AS would like to thank Sajal Mandal for fruitful discussions on various issues of Python. AS acknowledge the support of IUCAA, Pune under Visiting associateship programme.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lalke, A.R., Singh, G.P. & Singh, A. Cosmic dynamics with late-time constraints on the parametric deceleration parameter model. Eur. Phys. J. Plus 139, 288 (2024). https://doi.org/10.1140/epjp/s13360-024-05091-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-024-05091-5