Skip to main content
Log in

Cosmic dynamics with late-time constraints on the parametric deceleration parameter model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the evolution of a flat Friedmann–Lemaitre–Robertson–Walker (FLRW) model equipped with the matter content induced by the fluid having equation of state depending on the parametric deceleration parameter. We reconstruct the universe which is composed of the dark energy and the non-relativistic matter. The universe transits from the decelerated phase dominated by the non-relativistic matter into an accelerated phase dominated by the dark energy. We single out the physically reasonable cases by checking the compatibility of the model to the observations. The model parameters are constrained by \(\chi ^2\)minimization technique. Based on the best fit values of the model parameters, evolution of the equation of state parameter, energy density, cosmographic parameters along with the role of the energy conditions are investigated in detail. The phantom dominated evolution may be realized during the future in reconstructed universe having the present age compatible with the model dependent estimates and the \(\Lambda \) cold dark matter model, subjected to the best fit values of the model parameters. And, the universe may lead to the little-rip singularity as \(z\rightarrow -1\) in the remote future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This paper has no new associated data. All concepts as well as logical implications are stated in the paper with citations to the data sources.

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

    Article  ADS  Google Scholar 

  3. C.L. Bennett et al., Astrophys. J. Suppl. Ser. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20

    Article  ADS  Google Scholar 

  4. N. Aghanim et al., Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

    Article  Google Scholar 

  5. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155–228 (2012). https://doi.org/10.1007/s10509-012-1181-8

    Article  ADS  Google Scholar 

  6. S. Capozziello, R. D’Agostino, O. Luongo, Int. J. Mod. Phys. D 28, 1930016 (2019). https://doi.org/10.1142/S0218271819300167

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1–104 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

    Article  ADS  MathSciNet  Google Scholar 

  8. S.M. Carroll, W.H. Press, E.L. Turner, Annu. Rev. Astron. Astrophy. 30, 499–542 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002435

    Article  ADS  Google Scholar 

  9. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501

    Article  ADS  Google Scholar 

  10. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010). https://doi.org/10.1103/RevModPhys.82.451

    Article  ADS  Google Scholar 

  11. A.R. Lalke, G.P. Singh, A. Singh, Int. J. Geom. Methods Mod. Phys. 20, 2350131 (2023). https://doi.org/10.1142/S0219887823501311

    Article  Google Scholar 

  12. S. Mandal, A. Singh, R. Chaubey, Int. J. Geom. Methods Mod. Phys. 20, 2350084 (2023). https://doi.org/10.1142/S0219887823500846

    Article  Google Scholar 

  13. G. Manna, A. Panda, A. Karmakar, S. Ray, M.R. Islam, Chin. Phys. C 47, 025101 (2023). https://doi.org/10.1088/1674-1137/ac9fbe

    Article  ADS  Google Scholar 

  14. R.R. Sahoo, K.L. Mahanta, S. Ray, Universe 8, 573 (2022). https://doi.org/10.3390/universe8110573

    Article  ADS  Google Scholar 

  15. N. Ahmed, A. Pradhan, Indian J. Phys. 96, 301–307 (2022). https://doi.org/10.1007/s12648-020-01948-4

    Article  ADS  Google Scholar 

  16. A.K. Yadav, G.K. Goswami, A. Pradhan, S.K. Srivastava, Indian J. Phys. 96, 1569–1575 (2022). https://doi.org/10.1007/s12648-021-02071-8

    Article  ADS  Google Scholar 

  17. A. Pourbagher, A. Amani, Astrophys. Space Sci. 364, 140 (2019). https://doi.org/10.1007/s10509-019-3631-z

    Article  ADS  Google Scholar 

  18. G.P. Singh, A.R. Lalke, N. Hulke, Pramana -J. Phys. 94, 147 (2020). https://doi.org/10.1007/s12043-020-02022-8

    Article  ADS  Google Scholar 

  19. S. Capozziello, V.F. Cardone, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 73, 043512 (2006). https://doi.org/10.1103/PhysRevD.73.043512

    Article  ADS  Google Scholar 

  20. S. Nojiri, S.D. Odintsov, Phys. Rev. D. 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003

    Article  ADS  Google Scholar 

  21. S. Nojiri, S.D. Odintsov, Phys. Lett. B 686, 44–48 (2010). https://doi.org/10.1016/j.physletb.2010.02.017

    Article  ADS  MathSciNet  Google Scholar 

  22. A.V. Astashenok, S. Nojiri, S.D. Odintsov, R.J. Scherrer, Phys. Lett. B 713, 145–153 (2012). https://doi.org/10.1016/j.physletb.2012.06.017

    Article  ADS  Google Scholar 

  23. S. Mandal, A. Singh, R. Chaubey, Eur. Phys. J. Plus 137, 1246 (2022). https://doi.org/10.1140/epjp/s13360-022-03471-3

    Article  Google Scholar 

  24. A. Singh, R. Raushan, R. Chaubey, S. Mandal, K.C. Mishra, Int. J. Geom. Methods Mod. Phys. 19, 2250107 (2022). https://doi.org/10.1142/S0219887822501079

    Article  Google Scholar 

  25. N. Hulke, G.P. Singh, B.K. Bishi, A. Singh, New Astron. 77, 101357 (2020). https://doi.org/10.1016/j.newast.2020.101357

    Article  Google Scholar 

  26. A. Singh, A.K. Shukla, S. Krishnannair, Int. J. Mod. Phys. A 38, 2350169 (2023). https://doi.org/10.1142/S0217751X23501695

    Article  ADS  Google Scholar 

  27. A. Singh, Astrophys. Space Sci. 365, 54 (2020). https://doi.org/10.1007/s10509-020-03768-8

    Article  ADS  Google Scholar 

  28. G.P. Singh, N. Hulke, A. Singh, Indian J. Phys. 94, 127–141 (2020). https://doi.org/10.1007/s12648-019-01426-6

    Article  ADS  Google Scholar 

  29. G.P. Singh, A.R. Lalke, N. Hulke, Braz. J. Phys. 50, 725–743 (2020). https://doi.org/10.1007/s13538-020-00788-1

    Article  ADS  Google Scholar 

  30. S.D. Odintsov, V.K. Oikonomou, Class. Quant. Grav. 33, 125029 (2016). https://doi.org/10.1088/0264-9381/33/12/125029

    Article  ADS  Google Scholar 

  31. I. Brevik, O. Gron, J. de Haro, S.D. Odintsov, E.N. Saridakis, Int. J. Mod. Phys. D 26, 1730024 (2017). https://doi.org/10.1142/S0218271817300245

    Article  ADS  Google Scholar 

  32. A. Singh, Eur. Phys. J. Plus 136, 522 (2021). https://doi.org/10.1140/epjp/s13360-021-01519-4

    Article  Google Scholar 

  33. A.A. Mamon, S. Das, Eur. Phys. J. C 77, 495 (2017). https://doi.org/10.1140/epjc/s10052-017-5066-4

    Article  ADS  Google Scholar 

  34. J.-Z. Ma, X. Zhang, Phys. Lett. B 699, 233–238 (2011). https://doi.org/10.1016/j.physletb.2011.04.013

    Article  ADS  Google Scholar 

  35. J.C. Wang, X.H. Meng, Eur. Phys. J. C 79, 848 (2019). https://doi.org/10.1140/epjc/s10052-019-7343-x

    Article  ADS  Google Scholar 

  36. G.P. Singh, A. Lalke, Indian J. Phys. 96, 4361–4372 (2022). https://doi.org/10.1007/s12648-022-02341-z

    Article  ADS  Google Scholar 

  37. A. Singh, Chin. J. Phys. 79, 481–489 (2022). https://doi.org/10.1016/j.cjph.2022.09.009

    Article  Google Scholar 

  38. D. Perkovic, H. Stefancic, Eur. Phys. J. C 80, 629 (2020). https://doi.org/10.1140/epjc/s10052-020-8199-9

    Article  ADS  Google Scholar 

  39. A. Singh, Eur. Phys. J. C 83, 696 (2023). https://doi.org/10.1140/epjc/s10052-023-11879-z

    Article  ADS  Google Scholar 

  40. M. Visser, Science 276, 88–90 (1997). https://doi.org/10.1126/science.276.5309.88

    Article  ADS  Google Scholar 

  41. T. Qiu, Y.-F. Cai, X.-M. Zhang, Mod. Phys. Lett. A 23, 2787–2798 (2008). https://doi.org/10.1142/S0217732308026194

    Article  ADS  Google Scholar 

  42. A.A. Sen, R.J. Scherrer, Phys. Lett. B 659, 457–461 (2008). https://doi.org/10.1016/j.physletb.2007.11.070

    Article  ADS  Google Scholar 

  43. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001

    Article  ADS  Google Scholar 

  44. G.S. Sharov, V.O. Vasiliev, Math. Model. Geom. 6, 1–20 (2018). https://doi.org/10.26456/mmg/2018-611

    Article  Google Scholar 

  45. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013). https://doi.org/10.1086/670067

    Article  ADS  Google Scholar 

  46. S. Hinton, J. Open Source Softw. 1, 45 (2016). https://doi.org/10.21105/joss.00045

    Article  ADS  Google Scholar 

  47. D.M. Scolnic et al., ApJ 859, 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb

    Article  ADS  Google Scholar 

  48. G. Ellis, R. Maartens, M. MacCallum, Relativistic Cosmology (Cambridge University Press, Cambridge, 2012). https://doi.org/10.1017/CBO9781139014403

    Book  Google Scholar 

  49. K. Asvesta, L. Kazantzidis, L. Perivolaropoulos, C.G. Tsagas, Mon. Not. R. Astron. Soc. 513, 2394–2406 (2022). https://doi.org/10.1093/mnras/stac922

    Article  ADS  Google Scholar 

  50. F.Y. Wang, Z.G. Dai, S. Qi, A &A 507, 53–59 (2009). https://doi.org/10.1051/0004-6361/200911998

    Article  ADS  Google Scholar 

  51. S. Pan, A. Mukherjee, N. Banerjee, Mon. Not. R. Astron. Soc. 477, 1189–1205 (2018). https://doi.org/10.1093/mnras/sty755

    Article  ADS  Google Scholar 

  52. M.-L. Tong, Y. Zhang, Phys. Rev. D 80, 023503 (2009). https://doi.org/10.1103/PhysRevD.80.023503

    Article  ADS  Google Scholar 

  53. O. Akarsu et al., JCAP 01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022

    Article  ADS  Google Scholar 

  54. P.H. Frampton, K.J. Ludwick, R.J. Scherrer, Phys. Rev. D 85, 083001 (2012). https://doi.org/10.1103/PhysRevD.85.083001

    Article  ADS  Google Scholar 

  55. A. Singh, A. Beesham, N.K. Tripathi, Chin. J. Phys. 81, 125–133 (2023). https://doi.org/10.1016/j.cjph.2022.11.016

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the honorable reviewer for highlighting different issues which have been helpful in modification of the manuscript during revision process. AL and AS would like to thank Sajal Mandal for fruitful discussions on various issues of Python. AS acknowledge the support of IUCAA, Pune under Visiting associateship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini R. Lalke.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalke, A.R., Singh, G.P. & Singh, A. Cosmic dynamics with late-time constraints on the parametric deceleration parameter model. Eur. Phys. J. Plus 139, 288 (2024). https://doi.org/10.1140/epjp/s13360-024-05091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05091-5

Navigation