Skip to main content
Log in

Studying the impact of biaxial strain on the electronic and optical properties of \(\textrm{Ba}_{2}\textrm{YBiO}_{6}\) and \(\textrm{Ba}_{2}\textrm{ScBiO}_{6}\) double perovskites for optoelectronic applications: ab initio calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report the electronic, vibrational, and optical properties of specific double perovskites, i.e., \(\textrm{Ba}_{2}\textrm{YBiO}_{6}\) (BYBO) and \(\textrm{Ba}_{2}\textrm{ScBiO}_{6}\) (BSBO) using first-principle calculations based on density functional theory. The stability of both the compounds has been confirmed by their elastic and thermodynamic properties. The effects of strain on the electronic and optical properties of BYBO and BSBO; with an external range of \(-5\) to \(+5\%\). Electronic properties show semiconducting behavior with bandgap (\(E_{\textrm{g}}\)) values of; \(E_{\textrm{g}} = 1.68 \,\hbox {eV}\) and \(E_{\textrm{g}} = 1.35 \,\hbox {eV}\), for BYBO and BSBO, respectively with indirect bandgap alignment. On application on external tensile strain \(\ge +3\%\), the bandgap of BYBO and BSBO undergoes a transition from indirect alignment to direct alignment, whereas the electronic bandgap alignment does not change with compressive strain. Interestingly, the magnitude of the bandgap shows contrasting behavior, i.e., the bandgap increases (up to 0.9–1 eV) with compressive strain and decreases (up to 0.7–0.8 eV) with tensile strain. The wavelength values calculated in the absorption spectra of the pristine samples are 373 nm for BYBO and 434 nm for BSBO; suggesting their potential suitability as alternatives for “solar cell” applications, photodetectors, superlenses, photovoltaic devices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

No Data associated in the manuscript.

References

  1. W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Energy Environ. Sci. 12, 442–462 (2019). https://doi.org/10.1039/C8EE01574K

    Article  Google Scholar 

  2. B. Li, X. Wu, S. Zhang, Z. Li, D. Gao, X. Chen, S. Xiao, C.-C. Chueh, A.K.-Y. Jen, Z. Zhu, 446, 137144 (2022). https://doi.org/10.1016/j.cej.2022.137144

  3. T. Zelai, S.A. Rouf, Q. Mahmood, S. Bouzgarrou, M.A. Amin, A.I. Aljameel, T. Ghrib, H.H. Hegazy, A. Mera, First-principles study of lead-free double perovskites \(ga_{2}pdx_{6}\) (x = cl, br, and i) for solar cells and renewable energy. J. Market. Res. 16, 631–639 (2022). https://doi.org/10.1016/j.jmrt.2021.12.002

    Article  Google Scholar 

  4. F.A. Najar, S. Abass, K. Sultan, M.A. Kharadi, G.F.A. Malik, R. Samad, Comparative study of optical properties of substitutionally doped la2nimno6 double perovskite ceramic: A potential candidate for solar cells and dielectrics. Physica B 621, 413311 (2021). https://doi.org/10.1016/j.physb.2021.413311

    Article  Google Scholar 

  5. P.-K. Kung, M.-H. Li, P.-Y. Lin, J.-Y. Jhang, M. Pantaler, D.C. Lupascu, G. Grancini, P. Chen, Lead-free double perovskites for perovskite solar cells. Solar RRL 4(2), 1900306 (2020). https://doi.org/10.1002/solr.201900306

    Article  Google Scholar 

  6. S. Yadav, D. Kumar, R.S. Yadav, A.K. Singh, Progress in Solid State Chemistry 100391 (2023). https://doi.org/10.1016/j.progsolidstchem.2023.100391

  7. H. Saci, B. Bouabdallah, N. Benseddik, Z. Nabi, B. Bouhafs, B. Benichou, T. Bellakhdar, A. Zaoui, Comput. Condens. Matter (2023). https://doi.org/10.1016/j.cocom.2023.e00791

    Article  Google Scholar 

  8. A. Shereef, P.A. Aleena, J. Kunjumon, A.K. Jose, S.A. Thomas, M. Tomy, T.S. Xavier, S. Hussain, D. Sajan, Mater. Sci. Eng., B 289, 116262 (2023). https://doi.org/10.1016/j.mseb.2023.116262

    Article  Google Scholar 

  9. M. Naseri, D.R. Salahub, S. Amirian, H. Shahmohamadi, M.A. Rashid, M. Faraji, N. Fatahi, Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2023.105617

    Article  Google Scholar 

  10. X. Sun, R. Asadpour, W. Nie, A.D. Mohite, M.A. Alam, A physics-based analytical model for perovskite solar cells [sep 15 1389–1394]. IEEE J. Photovolt. 6(5), 1390–1390 (2016). https://doi.org/10.1109/JPHOTOV.2016.2589658

    Article  Google Scholar 

  11. L. Rakocevic, R. Gehlhaar, T. Merckx, W. Qiu, U.W. Paetzold, H. Fledderus, J. Poortmans, Interconnection optimization for highly efficient perovskite modules. IEEE J. Photovolt. 7(1), 404–408 (2017). https://doi.org/10.1109/JPHOTOV.2016.2626144

    Article  Google Scholar 

  12. F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S.D. Stranks, H.J. Snaith, M. Atatüre, R.T. Phillips, R.H. Friend, J. Phys. Chem. Lett. 5(8), 1421–1426 (2014)

    Article  Google Scholar 

  13. M. Liu, R. Zhao, F. Sun, P. Zhang, R. Zhang, Z. Chen, S. Li, Front. Chem. 10, 887983 (2022)

    Article  ADS  Google Scholar 

  14. P. Liu, X. Yang, Y. Chen, H. Xiang, W. Wang, R. Ran, W. Zhou, Z. Shao, Promoting the efficiency and stability of cspbibr2-based all-inorganic perovskite solar cells through a functional cu2+ doping strategy. ACS Appl. Mater. Interfaces 12(21), 23984–23994 (2020). https://doi.org/10.1021/acsami.0c04938

    Article  Google Scholar 

  15. P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9(13), 1803017 (2019). https://doi.org/10.1002/aenm.201803017

    Article  Google Scholar 

  16. K. Qin, B. Dong, S. Wang, Improving the stability of metal halide perovskite solar cells from material to structure. J. Energy Chem. 33, 90–99 (2019). https://doi.org/10.1016/j.jechem.2018.08.004

    Article  Google Scholar 

  17. W.-F. Yang, F. Igbari, Y.-H. Lou, Z.-K. Wang, L.-S. Liao, Tin halide perovskites: Progress and challenges. Adv. Energy Mater. 10(13), 1902584 (2020). https://doi.org/10.1002/aenm.201902584

    Article  Google Scholar 

  18. W. Hu, X. He, Z. Fang, W. Lian, Y. Shang, X. Li, W. Zhou, M. Zhang, T. Chen, Y. Lu, L. Zhang, L. Ding, S. Yang, Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. Nano Energy 68, 104362 (2020). https://doi.org/10.1016/j.nanoen.2019.104362

    Article  Google Scholar 

  19. A. Singh, K.M. Boopathi, A. Mohapatra, Y.F. Chen, G. Li, C.W. Chu, Photovoltaic performance of vapor-assisted solution-processed layer polymorph of cs3sb2i9. ACS Appl. Mater. Interfaces 10(3), 2566–2573 (2018). https://doi.org/10.1021/acsami.7b16349

    Article  Google Scholar 

  20. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K

    Article  Google Scholar 

  21. J. Gong, X. Li, W. Huang, P. Guo, T.J. Marks, R.D. Schaller, T. Xu, ACS Appl. Energy Mater. 4(5), 4704–4710 (2021). https://doi.org/10.1021/acsaem.1c00316

    Article  Google Scholar 

  22. B. Wang, N. Li, L. Yang, C. Dall’Agnese, A.K. Jena, T. Miyasaka, X.-F. Wang, J. Am. Chem. Soc. 143(36), 14877–14883 (2021). https://doi.org/10.1021/jacs.1c07200

    Article  Google Scholar 

  23. S. Zuhair Abbas Shah, S. Niaz, T. Nasir, J. Sifuna, Results Chem. 5, 100828 (2023). https://doi.org/10.1016/j.rechem.2023.100828

    Article  Google Scholar 

  24. J. Zhou, P. Xie, C. Wang, T. Bian, J. Chen, Y. Liu, Z. Guo, C. Chen, X. Pan, M. Luo, J. Yin, L. Mao, Angew. Chem. Int. Ed. 62(35), 202307646 (2023). https://doi.org/10.1002/anie.202307646

    Article  Google Scholar 

  25. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294

    Article  Google Scholar 

  26. R. Mohan, Green bismuth. Nat. Chem. 2, 336 (2010). https://doi.org/10.1038/nchem.609

    Article  Google Scholar 

  27. S. Vasala, M. Karppinen, Prog. Solid State Chem. 43(1), 1–36 (2015). https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  Google Scholar 

  28. M.S. Sheikh, A.P. Sakhya, R. Maity, A. Dutta, T.P. Sinha, Sol. Energy Mater. Sol. Cells 193, 206–213 (2019). https://doi.org/10.1016/j.solmat.2019.01.015

    Article  Google Scholar 

  29. F. Gheorghiu, L. Curecheriu, I. Lisiecki, P. Beaunier, S. Feraru, M.N. Palamaru, V. Musteata, N. Lupu, L. Mitoseriu, J. Alloy. Compd. 649, 151–158 (2015). https://doi.org/10.1016/j.jallcom.2015.07.136

    Article  Google Scholar 

  30. R.J. Booth, R. Fillman, H. Whitaker, A. Nag, R.M. Tiwari, K.V. Ramanujachary, J. Gopalakrishnan, S.E. Lofland, Mater. Res. Bull. 44(7), 1559–1564 (2009). https://doi.org/10.1016/j.materresbull.2009.02.003

    Article  Google Scholar 

  31. T. Le Bahers, M. Rérat, P. Sautet, Semiconductors used in photovoltaic and photocatalytic devices: Assessing fundamental properties from dft. J. Phys. Chem. C 118(12), 5997–6008 (2014). https://doi.org/10.1021/jp409724c

    Article  Google Scholar 

  32. I. Hamideddine, N. Tahiri, O.E. Bounagui, H. Ez-Zahraouy, J. Korean Ceram. Soc. 59(3), 350–358 (2022). https://doi.org/10.1007/s43207-021-00178-6

    Article  Google Scholar 

  33. I. Ait brahim, N. Bekkioui, M. Tahiri, H. Ez-Zahraouy, Chem. Phys. Lett. 805, 139929 (2022). https://doi.org/10.1016/j.cplett.2022.139929

    Article  Google Scholar 

  34. A. Ur Rahman, M. Aurangzeb, R. Khan, Q. Zhang, A. Dahshan, J. Solid State Chem. 305, 122661 (2022). https://doi.org/10.1016/j.jssc.2021.122661

    Article  Google Scholar 

  35. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  36. K. Refson, P.R. Tulip, S.J. Clark, Phys. Rev. B 73, 155114 (2006). https://doi.org/10.1103/PhysRevB.73.155114

    Article  ADS  Google Scholar 

  37. S. Dani, R. Kumar, H. Sharma, R.J. Choudhary, N. Goyal, P. Kaur, R. Pandit, Phys. Chem. Chem. Phys. 25, 20863–20870 (2023). https://doi.org/10.1039/D3CP02020G

    Article  Google Scholar 

  38. S. Al-Qaisi, M. Mushtaq, J.S. Alzahrani, H. Alkhaldi, Z.A. Alrowaili, H. Rached, B.U. Haq, Q. Mahmood, M.S. Al-Buriahi, M. Morsi, Micro Nanostruct. 170, 207397 (2022). https://doi.org/10.1016/j.micrna.2022.207397

    Article  Google Scholar 

  39. S. Rahman, A. Hussain, S. Noreen, N. Bibi, S. Arshad, J.U. Rehman, M.B. Tahir, J. Solid State Chem. 317, 123650 (2023)

    Article  Google Scholar 

  40. S. Baroni, S. Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515–562 (2001). https://doi.org/10.1103/RevModPhys.73.515

    Article  ADS  Google Scholar 

  41. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Zeitschrift für Kristallographie - Crystalline Materials 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  ADS  Google Scholar 

  42. S. Dani, A. Arya, H. Sharma, R. Kumar, N. Goyal, R. Kumar, R. Pandit, J. Alloy. Compd. 913, 165177 (2022)

    Article  Google Scholar 

  43. M. Born, K. Huang, Dynamical Theory of Crystal Lattices, 1st edn. (Oxford university press, 1954)

  44. E. Cockayne, B.P. Burton, Phonons and static dielectric constant in catio 3 from first principles. Phys. Rev. B 62(6), 3735 (2000)

    Article  ADS  Google Scholar 

  45. T. Bellakhdar, Z. Nabi, B. Bouabdallah, B. Benichou, H. Saci, Appl. Phys. A 128(2), 155 (2022)

    Article  ADS  Google Scholar 

  46. M. Hussain, M. Rashid, A. Ali, M.F. Bhopal, A.S. Bhatti, Ceram. Int. 46(13), 21378–21387 (2020)

    Article  Google Scholar 

  47. B.R. Sutherland, A.K. Johnston, A.H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, E.H. Sargent, ACS Photon. 2(8), 1117–1123 (2015). https://doi.org/10.1021/acsphotonics.5b00164

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Rabia Pandit is grateful to the Department of Science and Technology (DST), New Delhi (India), for providing financial support under the Women Scientist Scheme (SR/ WOS-A/PM-46/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Pandit.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dani, S., Sharma, H., Kumar, R. et al. Studying the impact of biaxial strain on the electronic and optical properties of \(\textrm{Ba}_{2}\textrm{YBiO}_{6}\) and \(\textrm{Ba}_{2}\textrm{ScBiO}_{6}\) double perovskites for optoelectronic applications: ab initio calculations. Eur. Phys. J. Plus 139, 284 (2024). https://doi.org/10.1140/epjp/s13360-024-05085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05085-3

Navigation