Skip to main content
Log in

Hubbard interaction induced non-symmetric spin and pseudo-spin entanglement at different valleys of graphene

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 15 April 2024

This article has been updated

Abstract

Spin-pseudo-spin intra-particle entanglement of a graphene sheet in the presence of Rashba and Hubbard interactions has been investigated. Hubbard interaction is given by the mean-field approach where we have employed the realistic value of the Hubbard interaction strength of graphene, which has been provided by theoretical computations previously performed in this field. Results show that the Hubbard interaction with its realistic strength removes spin and pseudo-spin entanglement at one of the valleys, whereas this significantly enhances the spin and pseudospin entanglement at the other valley. Accordingly, spin and pseudospin entanglement appears to be non-symmetric between these two valleys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility Statement

The data and computational codes that support the findings of this study are available on request from the corresponding author.

Change history

References

  1. I. Žutić, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  ADS  Google Scholar 

  2. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A.Y. Chtchelkanova, D. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  ADS  Google Scholar 

  3. S. Murakami, N. Nagaosa, S.-C. Zhang, Dissipationless quantum spin current at room temperature. Science 301(5638), 1348–1351 (2003). https://doi.org/10.1126/science.1087128

    Article  ADS  Google Scholar 

  4. T. Farajollahpour, S. Khamouei, S.S. Shateri, A. Phirouznia, Anisotropic friedel oscillations in graphene-like materials: The dirac point approximation in wave-number dependent quantities revisited. Sci. Rep. 8(1), 1–14 (2018). https://doi.org/10.1038/s41598-018-19730-2

    Article  Google Scholar 

  5. N. Shahabi, A. Phirouznia, Normal electric field enhanced light-induced polarizations and magnetic detection of valley polarization in silicene. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-73138-5

    Article  Google Scholar 

  6. R. Baghran, M. Tehranchi, A. Phirouznia, Magnetic generation of normal pseudo-spin polarization in disordered graphene. Sci. Rep. 11(1), 1–8 (2021). https://doi.org/10.1038/s41598-021-94218-0

    Article  Google Scholar 

  7. D. Elias, R. Gorbachev, A. Mayorov, S. Morozov, A. Zhukov, P. Blake, L. Ponomarenko, I. Grigorieva, K. Novoselov, F. Guinea, A. Geim, Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 235431 (2011). https://doi.org/10.1038/nphys2049

    Article  Google Scholar 

  8. D. Pesin, A.H. MacDonald, Spintronics and pseudo-spintronics in graphene and topological insulators. Nat. Mater. 11(5), 409–416 (2012). https://doi.org/10.1038/nmat3305

    Article  ADS  Google Scholar 

  9. D. Huertas-Hernando, F. Guinea, A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006). https://doi.org/10.1103/PhysRevB.74.155426

    Article  ADS  Google Scholar 

  10. H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006). https://doi.org/10.1103/PhysRevB.74.165310

    Article  ADS  Google Scholar 

  11. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007). https://doi.org/10.1103/PhysRevB.75.041401

    Article  ADS  Google Scholar 

  12. M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009). https://doi.org/10.1103/PhysRevB.80.235431

    Article  ADS  Google Scholar 

  13. M. Trushin, J. Schliemann, Pseudo-spin in optical and transport properties of graphene. Phys. Rev. Lett. 107, 156801 (2011). https://doi.org/10.1103/PhysRevLett.107.156801

    Article  ADS  Google Scholar 

  14. F. Souza, G.M.A. Almeida, M.L. Lyra, M.S.S. Pereira, Interplay between charge and spin thermal entanglement in Hubbard dimers. Phys. Rev. A 102, 032421 (2020). https://doi.org/10.1103/PhysRevA.102.032421

    Article  ADS  Google Scholar 

  15. J.P. Coe, V.V. França, I. D’Amico, Hubbard model as an approximation to the entanglement in nanostructures. Phys. Rev. A 81, 052321 (2010). https://doi.org/10.1103/PhysRevA.81.052321

    Article  ADS  Google Scholar 

  16. S.-J. Gu, S.-S. Deng, Y.-Q. Li, H.-Q. Lin, Entanglement and quantum phase transition in the extended Hubbard model. Phys. Rev. Lett. 93, 086402 (2004). https://doi.org/10.1103/PhysRevLett.93.086402

    Article  ADS  Google Scholar 

  17. H. Feldner, Z.Y. Meng, A. Honecker, D. Cabra, S. Wessel, F.F. Assaad, Magnetism of finite graphene samples: mean-field theory compared with exact diagonalization and quantum monte carlo simulations. Phys. Rev. B 81, 115416 (2010). https://doi.org/10.1103/PhysRevB.81.115416

    Article  ADS  Google Scholar 

  18. B. Valenzuela, M.A.H. Vozmediano, Pomeranchuk instability in doped graphene. New J. Phys. 10(11), 113009 (2008). https://doi.org/10.1088/1367-2630/10/11/113009

    Article  ADS  Google Scholar 

  19. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998). https://doi.org/10.1103/PhysRevLett.80.2245

    Article  ADS  Google Scholar 

  20. T.O. Wehling, E. ŞaşıOğlu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blügel, Strength of effective coulomb interactions in graphene and graphite. Phys. Rev. Lett. 106, 236805 (2011). https://doi.org/10.1103/PhysRevLett.106.236805

    Article  ADS  Google Scholar 

  21. B.G. Moraes, W. de Aron, Cummings, Stephan Roche, emergence of intraparticle entanglement and time-varying violation of Bell’s inequality in Dirac matter. Phys. Rev. B 102, 041403 (2020). https://doi.org/10.1103/PhysRevB.102.041403

    Article  ADS  Google Scholar 

  22. B.G. Moraes Araújo, A. Acín, D. Cavalcanti Santos, S.J.L. Roche, J. Calsamiglia Costa, Quantum information in lattices. Universitat Autnoma de Barcelona. Programa de Doctorat en Fsica (2022) https://ddd.uab.cat/record/267056

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present study. Computation, and results analysis were performed by AP, ShA and EF. The first draft of the manuscript was written by ShA and AP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Phirouznia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsani, S., Faizi, E. & Phirouznia, A. Hubbard interaction induced non-symmetric spin and pseudo-spin entanglement at different valleys of graphene. Eur. Phys. J. Plus 139, 178 (2024). https://doi.org/10.1140/epjp/s13360-024-04985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04985-8

Navigation