Skip to main content
Log in

Reheating constraints on modified quadratic chaotic inflation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The reheating era of inflationary universe can be parameterized by various parameters like reheating temperature \(T_{\text {re}}\), reheating duration \(N_{\text {re}}\) and average equation of state parameter \({\overline{\omega }}_{\text {re}}\), which can be constrained by observationally feasible values of scalar power spectral amplitude \(A_{\text {s}}\) and spectral index \(n_{\text {s}}\). In this work, by considering the quadratic chaotic inflationary potential with logarithmic correction in mass, we examine the reheating era in order to place some limits on model’s parameter space. By investigating the reheating epoch using Planck 2018+BK18+BAO data, we show that even a small correction can make the quadratic chaotic model consistent with latest cosmological observations. We also find that the study of reheating era helps to put much tighter constraints on model and effectively improves accuracy of model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study can be derived using the content provided in the article.

References

  1. A.H. Guth, Phys. Rev. D 23(2), 347 (1981). https://doi.org/10.1103/PhysRevD.23.347

    Article  ADS  CAS  Google Scholar 

  2. A. Starobinsky, Phys. Lett. B 91(1), 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  ADS  Google Scholar 

  3. A. Linde, Phys. Lett. B 108(6), 389 (1982). https://doi.org/10.1016/0370-2693(82)91219-9

    Article  ADS  Google Scholar 

  4. A. Linde, Phys. Lett. B 129(3–4), 177 (1983). https://doi.org/10.1016/0370-2693(83)90837-7

    Article  ADS  Google Scholar 

  5. A. Riotto, (2002). https://doi.org/10.48550/ARXIV.HEP-PH/0210162

  6. V.F. Mukhanov, G.V. Chibisov, ZhETF Pisma Redaktsiiu 33, 549 (1981)

    ADS  Google Scholar 

  7. A. Starobinsky, Phys. Lett. B 117(3–4), 175 (1982). https://doi.org/10.1016/0370-2693(82)90541-X

    Article  ADS  Google Scholar 

  8. A.H. Guth, S.Y. Pi, Phys. Rev. D 32(8), 1899 (1985). https://doi.org/10.1103/PhysRevD.32.1899

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. G.F. Smoot, C.L. Bennett, A. Kogut et al., Astrophys. J. 396, L1 (1992). https://doi.org/10.1086/186504

    Article  ADS  Google Scholar 

  10. J. Dunkley, E. Komatsu, M.R. Nolta et al., Astrophys. J. Suppl. Ser. 180(2), 306 (2009). https://doi.org/10.1088/0067-0049/180/2/306

    Article  ADS  CAS  Google Scholar 

  11. E. Komatsu, K.M. Smith, J. Dunkley et al., Astrophys. J. Suppl. Ser. 192(2), 18 (2011). https://doi.org/10.1088/0067-0049/192/2/18

    Article  ADS  Google Scholar 

  12. P.A.R. Ade, N. Aghanim, C. Armitage-Caplan et al., Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591

    Article  Google Scholar 

  13. P.A.R. Ade, N. Aghanim, C. Armitage-Caplan et al., Astron. Astrophys. 571, A22 (2014). https://doi.org/10.1051/0004-6361/201321569

    Article  Google Scholar 

  14. P.A.R. Ade, N. Aghanim, M. Arnaud et al., Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

    Article  CAS  Google Scholar 

  15. P.A.R. Ade, N. Aghanim, M. Arnaud et al., Astron. Astrophys. 594, A20 (2016). https://doi.org/10.1051/0004-6361/201525898

    Article  CAS  Google Scholar 

  16. N. Aghanim, Y. Akrami, M. Ashdown et al., Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

    Article  CAS  Google Scholar 

  17. Y. Akrami, F. Arroja, M. Ashdown et al., Astron. Astrophys. 641, A10 (2020). https://doi.org/10.1051/0004-6361/201833887

    Article  CAS  Google Scholar 

  18. M.S. Turner, Phys. Rev. D 28(6), 1243 (1983). https://doi.org/10.1103/PhysRevD.28.1243

    Article  ADS  MathSciNet  Google Scholar 

  19. J.H. Traschen, R.H. Brandenberger, Phys. Rev. D 42(8), 2491 (1990). https://doi.org/10.1103/PhysRevD.42.2491

    Article  ADS  CAS  Google Scholar 

  20. A. Albrecht, P.J. Steinhardt, M.S. Turner, F. Wilczek, Phys. Rev. Lett. 48(20), 1437 (1982). https://doi.org/10.1103/PhysRevLett.48.1437

    Article  ADS  CAS  Google Scholar 

  21. L. Kofman, A. Linde, A.A. Starobinsky, Phys. Rev. Lett. 73(24), 3195 (1994). https://doi.org/10.1103/PhysRevLett.73.3195

    Article  ADS  CAS  PubMed  Google Scholar 

  22. L. Kofman, A. Linde, A.A. Starobinsky, Phys. Rev. D 56(6), 3258 (1997). https://doi.org/10.1103/PhysRevD.56.3258

    Article  ADS  CAS  Google Scholar 

  23. M. Drewes, J.U. Kang, Nuclear Phys. B 875(2), 315 (2013). https://doi.org/10.1016/j.nuclphysb.2013.07.009

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. R. Allahverdi, R. Brandenberger, F.Y. Cyr-Racine, A. Mazumdar, Ann. Rev. Nuclear Part. Sci. 60(1), 27 (2010). https://doi.org/10.1146/annurev.nucl.012809.104511

    Article  ADS  CAS  Google Scholar 

  25. J. Martin, C. Ringeval, V. Vennin, Phys. Rev. Lett. 114(8), 081303 (2015). https://doi.org/10.1103/PhysRevLett.114.081303

    Article  ADS  CAS  PubMed  Google Scholar 

  26. J. Martin, C. Ringeval, Phys. Rev. D 82(2), 023511 (2010). https://doi.org/10.1103/PhysRevD.82.023511

    Article  ADS  CAS  Google Scholar 

  27. L. Dai, M. Kamionkowski, J. Wang, Phys. Rev. Lett. 113(4), 041302 (2014). https://doi.org/10.1103/PhysRevLett.113.041302

    Article  ADS  CAS  PubMed  Google Scholar 

  28. J. Martin, C. Ringeval, J. Cosmol. Astropart. Phys. 2006(08), 009 (2006). https://doi.org/10.1088/1475-7516/2006/08/009

    Article  Google Scholar 

  29. P. Adshead, R. Easther, J. Pritchard, A. Loeb, J. Cosmol. Astropart. Phys. 2011(02), 021 (2011). https://doi.org/10.1088/1475-7516/2011/02/021

    Article  Google Scholar 

  30. J. Mielczarek, Phys. Rev. D 83(2), 023502 (2011). https://doi.org/10.1103/PhysRevD.83.023502

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. J.L. Cook, E. Dimastrogiovanni, D.A. Easson, L.M. Krauss, J. Cosmol. Astropart. Phys. 2015(04), 047 (2015). https://doi.org/10.1088/1475-7516/2015/04/047

    Article  Google Scholar 

  32. G. Steigman, Ann. Rev. Nuclear Part. Sci. 57(1), 463 (2007). https://doi.org/10.1146/annurev.nucl.56.080805.140437

    Article  ADS  CAS  Google Scholar 

  33. S. Dodelson, L. Hui, Phys. Rev. Lett. 91(13), 131 (2003). https://doi.org/10.1103/physrevlett.91.131301

    Article  Google Scholar 

  34. A.R. Liddle, S.M. Leach, Phys. Rev. D 68(10), 103 (2003). https://doi.org/10.1103/physrevd.68.103503

    Article  Google Scholar 

  35. J. Martin, C. Ringeval, V. Vennin. Encyclopaedia Inflationaris (2013). https://doi.org/10.48550/arXiv.1303.3787. ArXiv:1303.3787 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th]

  36. V.N. Şenoğuz, Q. Shafi, Phys. Lett. B 668(1), 6 (2008). https://doi.org/10.1016/j.physletb.2008.08.017

    Article  ADS  CAS  Google Scholar 

  37. K. Enqvist, M. Karčiauskas, J. Cosmol. Astropart. Phys. 2014(02), 034 (2014). https://doi.org/10.1088/1475-7516/2014/02/034

    Article  Google Scholar 

  38. G. Ballesteros, C. Tamarit, J. High Energy Phys. 2016(2), 153 (2016). https://doi.org/10.1007/JHEP02(2016)153

    Article  Google Scholar 

  39. K. Nakayama, F. Takahashi, T.T. Yanagida, Phys. Lett. B 725(1–3), 111 (2013). https://doi.org/10.1016/j.physletb.2013.06.050

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. K. Nakayama, F. Takahashi, J. Cosmol. Astropart. Phys. 2010(11), 009 (2010). https://doi.org/10.1088/1475-7516/2010/11/009

    Article  CAS  Google Scholar 

  41. C. Pallis, Phys. Rev. D 91(12), 123508 (2015). https://doi.org/10.1103/PhysRevD.91.123508

    Article  ADS  CAS  Google Scholar 

  42. K. Kannike, G. Hütsi, L. Pizza et al., J. High Energy Phys. 2015(5), 65 (2015). https://doi.org/10.1007/JHEP05(2015)065

    Article  Google Scholar 

  43. L. Boubekeur, E. Giusarma, O. Mena, H. Ramírez, Phys. Rev. D 91(10), 103004 (2015). https://doi.org/10.1103/PhysRevD.91.103004

    Article  ADS  Google Scholar 

  44. L. Marzola, A. Racioppi, J. Cosmol. Astropart. Phys. 2016(10), 010 (2016). https://doi.org/10.1088/1475-7516/2016/10/010

    Article  CAS  Google Scholar 

  45. A. Racioppi, Phys. Rev. D 97(12), 123514 (2018). https://doi.org/10.1103/PhysRevD.97.123514

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. S. Kasuya, M. Taira, Phys. Rev. D 98(12), 123515 (2018). https://doi.org/10.1103/PhysRevD.98.123515

    Article  ADS  MathSciNet  CAS  Google Scholar 

  47. P.A. Ade, Z. Ahmed, M. Amiri et al., Phys. Rev. Lett. 127(15), 151301 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. W. Ahmed, O. Ishaque, M.U. Rehman, Int. J. Modern Phys. D 25(03), 1650035 (2016)

    Article  ADS  CAS  Google Scholar 

  49. D. Borah, D. Nanda, A.K. Saha, Phys. Rev. D 101(7), 075006 (2020). https://doi.org/10.1103/PhysRevD.101.075006

    Article  ADS  CAS  Google Scholar 

  50. A. Ghoshal, N. Okada, A. Paul, Phys. Rev. D 106(9), 095021 (2022). https://doi.org/10.1103/PhysRevD.106.095021

    Article  ADS  CAS  Google Scholar 

  51. R. Goswami, U.A. Yajnik, J. Cosmol. Astropart. Phys. 2018(10), 018 (2018). https://doi.org/10.1088/1475-7516/2018/10/018

    Article  CAS  Google Scholar 

  52. R. Goswami, U.A. Yajnik, Nuclear Phys. B 960, 115211 (2020). https://doi.org/10.1016/j.nuclphysb.2020.115211

    Article  MathSciNet  CAS  Google Scholar 

  53. D. Maity, P. Saha, Class. Quant. Grav. 36, 045010 (2019). https://doi.org/10.1088/1361-6382/ab0038

    Article  ADS  CAS  Google Scholar 

  54. M. Drees, Y. Xu, JCAP 09, 012 (2021). https://doi.org/10.1088/1475-7516/2021/09/012

    Article  ADS  CAS  Google Scholar 

  55. J. Martin, (2003). https://doi.org/10.48550/ARXIV.ASTRO-PH/0312492

  56. D. Boyanovsky, H.J. de Vega, R. Holman, J.F.J. Salgado, (1996). https://doi.org/10.48550/ARXIV.ASTRO-PH/9609007

  57. L. Kofman, (1998). https://doi.org/10.48550/ARXIV.HEP-PH/9802285

  58. G. Felder, L. Kofman, A. Linde, (1998). https://doi.org/10.48550/ARXIV.HEP-PH/9812289

  59. G.F. Giudice, I.I. Tkachev, A. Riotto, J. High Energy Phys. 2001(06), 020 (2001). https://doi.org/10.1088/1126-6708/2001/06/020

    Article  Google Scholar 

  60. M. Desroche, G.N. Felder, J.M. Kratochvil, A. Linde, Phys. Rev. D 71(10), 103516 (2005). https://doi.org/10.1103/PhysRevD.71.103516

    Article  ADS  CAS  Google Scholar 

  61. A. Linde, (2005) arXiv preprint arXiv:hep-th/0503203

  62. A. Vilenkin, Phys. Rev. D 27(12), 2848 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  63. M.R. Haque, D. Maity, R. Mondal, J. High Energy Phys. 2023(9), 12 (2023). https://doi.org/10.1007/JHEP09(2023)012

    Article  Google Scholar 

  64. M.R. Haque, D. Maity, Phys. Rev. D 106(2), 023506 (2022). https://doi.org/10.1103/PhysRevD.106.023506

    Article  ADS  CAS  Google Scholar 

  65. A. Chakraborty, M.R. Haque, D. Maity, R. Mondal, arXiv preprint arXiv:2304.13637 (2023)

  66. T. Harada, C.M. Yoo, K. Kohri, Phys. Rev. D 88, 084051 (2013). https://doi.org/10.1103/PhysRevD.88.084051

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

SY would like to acknowledge the Ministry of Education, Government of India, for providing fellowship. UAY acknowledges support from an Institute Chair Professorship of IIT Bombay.

Author information

Authors and Affiliations

Authors

Contributions

Sudhava Yadav has done all the calculation and data analysis and prepared first manuscript draft. Rajesh Goswami helped in analysis and deriving the conclusion. K. K. Venkataratnam has supervised the whole work, and Urjit A. Yajnik has given his valuable reviews to prepare the final draft.

Corresponding author

Correspondence to K. K. Venkataratnam.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

All authors agreed with the content, and all gave explicit consent to submit the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Goswami, R., Venkataratnam, K.K. et al. Reheating constraints on modified quadratic chaotic inflation. Eur. Phys. J. Plus 139, 185 (2024). https://doi.org/10.1140/epjp/s13360-024-04979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04979-6

Navigation