Skip to main content
Log in

\(e^{+}e^{-}\rightarrow l^{+}l^{-}\) scattering at finite temperature in the presence of a classical background magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work the \(e^{+}e^{-}\rightarrow l^{+}l^{-}\) scattering process is investigated. The cross-section is calculated considering three different effects: temperature, external magnetic field and chemical potential. The effect due to an external field is inserted into the problem through a redefinition of the fermionic field operator. Effects due to temperature and chemical potential are introduced using the Thermo Field Dynamics formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. Y. Gabellini, T. Grandou, D. Poizat, Electron-positron annihilation in thermal QCD. Ann. Phys. 202, 436 (1990). https://doi.org/10.1016/0003-4916(90)90231-C

    Article  ADS  CAS  Google Scholar 

  2. D.J. Schwarz, M. Stuke, Lepton asymmetry and cosmic QCD transition. J. Cosmol. Astropart. Phys. 2009, 025 (2009). https://doi.org/10.1088/1475-7516/2009/11/025

    Article  CAS  Google Scholar 

  3. K. Bhattacharya, “Elementary Particle Interactions In A Background Magnetic Field,” arXiv:hep-ph/0407099v1

  4. F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson, A.R. Santana, Thermal quantum field theory - Algebraic aspects and applications (World Scientific Publishing Company, USA, 2009)

    Book  Google Scholar 

  5. A.E. Santana, F. Khanna, Lie groups and thermal field theory. Phys. Lett. A 203, 68 (1995). https://doi.org/10.1016/0375-9601(95)00394-I

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. H. Gies, QED effective action at finite temperature: Two-loop dominance. Phys. Rev. D 61, 085021 (2010). https://doi.org/10.1103/PhysRevD.61.085021

    Article  ADS  Google Scholar 

  7. H.-H. Xu, C.-H. Xu, Compton scattering at finite temperature. Phys. Rev. D 52, 6116 (1995). https://doi.org/10.1103/PhysRevD.52.6116

    Article  ADS  CAS  Google Scholar 

  8. D.S. Cabral, A.F. Santos, Compton scattering in TFD formalism. Eur. Phys. J. C 83, 25 (2023). https://doi.org/10.1140/epjc/s10052-023-11182-x

    Article  ADS  CAS  Google Scholar 

  9. D.S. Cabral, A.F. Santos, F.C. Khanna, Violation of Lorentz symmetries and thermal effects in Compton scattering. Eur. Phys. J. Plus 138, 91 (2023). https://doi.org/10.1140/epjp/s13360-023-03707-w

    Article  Google Scholar 

  10. A.F. Santos, F.C. Khanna, Quantized gravito electromagnetism theory at finite temperature. Int. J. Mod. Phys. A 31, 1650122 (2016). https://doi.org/10.1142/S0217751X16501220

    Article  ADS  CAS  Google Scholar 

  11. P.R.A. Souza et al., On Lorentz violation in \(e^{-}+e^{+}\rightarrow \mu ^{-}+\mu ^{+}\) scattering at finite. Phys. Lett. B 791, 195 (2019). https://doi.org/10.1016/j.physletb.2019.02.033

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. A.F. Santos, F.C. Khanna, Lorentz violation in Bhabha scattering at finite temperature. Phys. Rev. D 95, 125012 (2017). https://doi.org/10.1103/PhysRevD.95.125012

    Article  ADS  Google Scholar 

  13. M.H. Lee, Fermionic chemical potential. J. Math. Chem. 5, 83 (1990). https://doi.org/10.1007/BF01166422

    Article  ADS  CAS  Google Scholar 

  14. D. Persson, V. Zeitlin, Note on QED with a magnetic field and chemical potential. Phys. Rev. D 51, 2026 (1995). https://doi.org/10.1103/PhysRevD.51.2026

    Article  ADS  CAS  Google Scholar 

  15. D. Binosi, L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams. Comput. Phys. Commun. 161, 76 (2004). https://doi.org/10.1016/j.cpc.2004.05.001

    Article  ADS  CAS  Google Scholar 

  16. R. Mertig, M. Böhm, A. Denner, Feyn Calc-computer-algebraic calculation of Feynman amplitudes. Comput. Phys. Commun. 64, 345 (1991). https://doi.org/10.1016/0010-4655(91)90130-D

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Y. Kazama, C.N. Yang, A.S. Goldhaber, Scattering of a Dirac particle with charge Z e by a fixed magnetic monopole. Phys. Rev. D 15, 2287 (1977). https://doi.org/10.1103/PhysRevD.15.2287

    Article  ADS  CAS  Google Scholar 

  18. K. Bhattacharya, “Solution of the Dirac equation in presence of an uniform magnetic field,” arXiv:0705.4275v2

  19. K. Bhattacharya and P.B. Pal, “Inverse beta-decay of arbitrarily polarized neutrons in a magnetic field,” arXiv:hep-ph/0209053

  20. G. Cook, R.H. Dickerson, Understanding the chemical potential. Amer. J. Phys. 63, 737 (1995). https://doi.org/10.1119/1.17844

    Article  ADS  Google Scholar 

  21. R. Iengo, Quantum field theory : an arcane setting for explaining the world (Morgan & Claypool Publishers, USA, 2018)

    Book  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Statistical Physics: Volume 5 (Elsevier, USA, 2013)

    Google Scholar 

  23. H.B. Callen, Thermodynamics and an introduction to thermostatistics (John Willey and Sons, NY, USA, 1985)

    Google Scholar 

  24. N.W. Ashcroft, N.D. Mermin, Solid state physics (Holt Rinehart and Winston, NY, USA, 1976)

    Google Scholar 

  25. M.P. Marder, Condensed Matter Physics (Willey, USA, 2010)

    Book  Google Scholar 

  26. E.W. Kolb, M.S. Turner, The early universe (Addison-Wesley Publishing Company, USA, 1990)

    Google Scholar 

  27. P.A.M. Dirac, A theory of electrons and protons. Proc. Royal Soc. London, Series A Contain. Papers Math. Phys. Char. 126, 360–365 (1930)

    ADS  CAS  Google Scholar 

  28. N.A. Lemos, Analytical mechanics (Cambridge University Press, UK, 2018)

    Book  Google Scholar 

  29. M.E. Peskin, D.V. Schroeder, An introduction of quantum field theory (Addison-Wesley Publishing Company, USA, 1995)

    Google Scholar 

  30. A. Tiwari, B. K. Patra, “Lowest-order electron-electron and electron-muon scattering in a strong magnetic field,” arXiv:1808.04236

  31. M.H. Sis, B. Mirza, A.K.B. Sefidi, \(e^{-}e^{+}\rightarrow l^{-}l^{+}\) scattering in a strong magnetic field and LV background. Ann. Phys. 448, 169173 (2023). https://doi.org/10.1016/j.aop.2022.169173

    Article  MathSciNet  CAS  Google Scholar 

  32. N.P. Landsman, C.G. Van Weert, Real- and imaginary-time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987). https://doi.org/10.1016/0370-1573(87)90121-9

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work by A. F. S. is partially supported by National Council for Scientific and Technological Development - CNPq project No. 313,400/2020–2. D. S. C. thanks CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Santos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, D.S., Santos, A.F. \(e^{+}e^{-}\rightarrow l^{+}l^{-}\) scattering at finite temperature in the presence of a classical background magnetic field. Eur. Phys. J. Plus 139, 190 (2024). https://doi.org/10.1140/epjp/s13360-024-04975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04975-w

Navigation