Skip to main content
Log in

Light localization near an interface between media with an exponential permittivity profile and a sharply vanishing Kerr nonlinearity with an increasing light intensity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

New peculiarities of light localization near the interface between media with an exponential profile of the dielectric permittivity and with a sharp suppression of the Kerr nonlinear response in a near-surface layer formed with an increasing light intensity are described theoretically. Two signs of nonlinear response corresponding to self-focusing and defocusing nonlinear media are considered. Exact solutions to stationary wave equation with dielectric permittivity consisting of spatial-dependent and intensity-dependent parts satisfying the boundary conditions at the medium interface and the near-surface layer boundary are found. The effect of the optical and geometric parameters on the transverse distribution of the light intensity and the features of the lightwave localization is analyzed. It is found that light localization length decreases with a decrease in the wavelength of excited radiation but the maximum of intensity remains unchanged. The wave intensity enlarges with an increase in the effective refractive index and in the threshold intensity. The near-surface domain width where a nonlinear response is suppressed enlarges with increasing the effective refractive index, the threshold intensity, and the Kerr nonlinearity coefficient. It reduces with increasing values of the parameters of the exponential graded-index layer. It is shown that the largest portion of the lightwave power is concentrated in the near-surface domain with suppressed nonlinear response, which plays the role of the main waveguide layer. It is found that the optical parameters of the exponential graded-index layer affect the redistribution of the wave energy between the contacting areas of the waveguide structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. T.M. Jordan, J.C. Partridge, N.W. Roberts, Disordered animal multilayer reflectors and the localization of light. J. R. Soc. Interface. 11, 20140948 (2014). https://doi.org/10.1098/rsif.2014.0948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D.M. Jović, M.R. Belić, C. Denz, Anderson localization of light at the interface between linear and nonlinear dielectric media with an optically induced photonic lattice. Phys. Rev. A 85, 031801 (2012). https://doi.org/10.1103/PhysRevA.85.031801

    Article  CAS  Google Scholar 

  3. R. Asmi, N.B. Ali, M. Kanzari, Enhancement of light localization in hybrid thue-morse/periodic photonic crystals. J. Mater. 2016, 9471312 (2016). https://doi.org/10.1155/2016/9471312

    Article  CAS  Google Scholar 

  4. A. Kahan, A. Greenbaum, M.J. Jang, J.E. Robinson, J.R. Cho, X. Chen, P. Kassraian, D.A. Wagenaar, V. Gradinaru, Light-guided sectioning for precise in situ localization and tissue interface analysis for brain-implanted optical fibers and GRIN lenses. Cell Rep. 36(13), 109744 (2021). https://doi.org/10.1016/j.celrep.2021.109744.PMID:34592157;PMCID:PMC8552649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A.K. Goyal, M. Husain, Y.Y. Massoud, Analysis of interface mode localization in disordered photonic crystal structure. J. Nanophoton. 16(4), 046007 (2022). https://doi.org/10.1117/1.JNP.16.046007

    Article  CAS  Google Scholar 

  6. U. Langbein, F. Lederer, H.E. Ponath, Generalized dispersion relations for nonlinear plate-guided waves. Opt. Commun. 53, 417–420 (1985). https://doi.org/10.1016/0030-4018(85)90030-6

    Article  Google Scholar 

  7. K.M. Leung, Propagation of nonlinear surface polaritons. Phys. Rev. A 31, 1189–1192 (1985). https://doi.org/10.1103/PhysRevA.31.1189

    Article  CAS  Google Scholar 

  8. D. Mihalache, M. Bertolotti, C. Sibilia, Nonlinear wave propagation in planar structures. Prog. Opt. 27, 227–313 (1989). https://doi.org/10.1016/S0079-6638(08)70087-8

    Article  Google Scholar 

  9. A.D. Boardman, M.M. Shabat, R.F. Wallis, TE waves at an interface between linear gyromagnetic and nonlinear dielectric media. J. Phys. D Appl. Phys. 24, 1702–1707 (1991). https://doi.org/10.1088/0022-3727/24/10/002

    Article  Google Scholar 

  10. A.A. Sukhorukov, Y.S. Kivshar, Nonlinear localized waves in a periodic medium. Phys. Rev. Lett. 87(8), 083901 (2001). https://doi.org/10.1103/PhysRevLett.87.083901

    Article  CAS  PubMed  Google Scholar 

  11. I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar, A.A. Zharov, A.D. Boardman, P. Egan, Nonlinear surface waves in left-handed materials. Phys. Rev. E 69, 016617–016621 (2004). https://doi.org/10.1103/PhysRevE.69.016617

    Article  MathSciNet  CAS  Google Scholar 

  12. H.S. Ashour, A.I. Assad, S-polarized surface waves in ferrite bounded by nonlinear nonmagnetic negative permittivity metamaterial. J. Al Azhar Univ. Gaza Natl. Sci. 13, 93–108 (2011)

    Google Scholar 

  13. I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar, Guided modes in negative-refractive-index waveguides. Phys. Rev. E 67, 057602 (2003). https://doi.org/10.1103/PhysRevE.67.057602

    Article  CAS  Google Scholar 

  14. A.A. Sukhorukov, Yu.S. Kivshar, Nonlinear guided waves and spatial solitons in a periodic layered medium. J. Opt. Soc. Am. B 19, 772–781 (2002). https://doi.org/10.1364/JOSAB.19.000772

    Article  MathSciNet  CAS  Google Scholar 

  15. B.A. Malomed, D. Mihalache, Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  16. D. Mihalache, Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  17. D.N. Christodoulides, M.I. Carvalho, Bright, dark, and grey spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995). https://doi.org/10.1364/JOSAB.12.001628

    Article  CAS  Google Scholar 

  18. B. Alfassi, C. Rotschild, O. Manela, M. Segev, D.N. Christodoulides, Nonlocal surface-wave solitons. Phys. Rev. Lett. 98, 213901 (2007). https://doi.org/10.1103/PhysRevLett.98.213901

    Article  CAS  PubMed  Google Scholar 

  19. Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011). https://doi.org/10.1103/RevModPhys.83.247

    Article  Google Scholar 

  20. V. N. Kadantsev, A. N. Goltsov, M. A. Kondakov. Electrosoliton dynamics in a thermalized molecular chain. Russ. Technol. J. 8(1), 43–57 (2020). https://doi.org/10.32362/2500-316X-2020-8-1-43-57

    Article  Google Scholar 

  21. M.J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, 1981)

    Google Scholar 

  22. C.-L. Chen, Foundations for guided-wave optics (Wiley, New York, 2005)

    Google Scholar 

  23. A.B. Shvartsburg, A. Maradudin, Waves in gradient metamaterials (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  24. M. Bednarik, M. Cervenka, Electromagnetic waves in graded-index planar waveguides. J. Opt. Soc. Am. B 37, 3631–3643 (2020). https://doi.org/10.1364/JOSAB.408679

    Article  Google Scholar 

  25. T. Touam, F. Yergeau, Analytical solution for a linearly graded-index-profile planar waveguide. Appl. Opt. 32, 309–312 (1993). https://doi.org/10.1364/AO.32.000309

    Article  CAS  PubMed  Google Scholar 

  26. A.B. Shvartsburg, Dispersion of electromagnetic waves in stratified and nonstationary media (exactly solvable models). Phys. Uspekhi 43, 1201–1228 (2000). https://doi.org/10.1070/PU2000v043n12ABEH000827

    Article  CAS  Google Scholar 

  27. M. Dalarsson, Y. Ivanenko, S. Nordebo, Wave propagation in waveguides with graded plasmonic obstacles. J. Opt. Soc. Am. B 38, 104–113 (2021). https://doi.org/10.1364/JOSAB.410092

    Article  CAS  Google Scholar 

  28. B. Rana, B.B. Svendsen, M. Dalarsson, TE-wave propagation over an impedance-matched RHM to LHM transition in a hollow waveguide. Progress Electromagn. Res. M 110, 1–10 (2022). https://doi.org/10.2528/PIERM22022505

    Article  Google Scholar 

  29. B.B. Svendsen, M. Söderström, H. Carlens, M. Dalarsson, Analytical and numerical models for TE-wave absorption in a graded-index GNP-treated cell substrate inserted in a waveguide. Appl. Sci. 12, 7097 (2022). https://doi.org/10.3390/app12147097

    Article  CAS  Google Scholar 

  30. H. Wang, Q. Zhou, W. Liu, Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation. J. Adv. Res. 38, 179–190 (2022). https://doi.org/10.1016/j.jare.2021.09.007

    Article  CAS  PubMed  Google Scholar 

  31. H. Wang, X. Li, Q. Zhou, W. Liu, Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media. Chaos, Solitons Fractals 166, 112924 (2023). https://doi.org/10.1016/j.chaos.2022.112924

    Article  Google Scholar 

  32. Z. Cao, Y. Jiang, Q. Shen, X. Dou, Y. Chen, Exact analytical method for planar optical waveguides with arbitrary index profile. J. Opt. Soc. Am. A 16(9), 2209–2212 (1999). https://doi.org/10.1364/JOSAA.16.002209

    Article  MathSciNet  Google Scholar 

  33. N.A. Kudryashov, Optical solitons of mathematical model with arbitrary refractive index. Optik 224, 165391 (2020). https://doi.org/10.1016/j.ijleo.2020.165391

    Article  CAS  Google Scholar 

  34. G. Akram, M. Sadaf, I. Zainab, The dynamical study of Biswas-Arshed equation via modified auxiliary equation method. Optik 255, 168614 (2022). https://doi.org/10.1016/j.ijleo.2022.168614

    Article  Google Scholar 

  35. N.A. Kudryashov, Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 259, 168888 (2022). https://doi.org/10.1016/j.ijleo.2022.168888

    Article  CAS  Google Scholar 

  36. D.J. Robbins, TE modes in a slab waveguide bounded by nonlinear media. Opt. Commun. 47, 309–312 (1983). https://doi.org/10.1016/0030-4018(83)90034-2

    Article  Google Scholar 

  37. C. Seaton, J. Valera, R. Shoemaker, G. Stegeman, J. Chilwell, S. Smith, Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media. IEEE J. Quantum Electron. 21, 774–783 (1985). https://doi.org/10.1109/JQE.1985.1072762

    Article  Google Scholar 

  38. K. Ogusu, TM waves guided by nonlinear planar waveguides. IEEE Trans. Microw. Theory Tech. 37, 941–946 (1989). https://doi.org/10.1109/22.25394

    Article  Google Scholar 

  39. F. Dios, L. Torner, F. Canal, Self-consistent solution for general nonlinear slab waveguides. Opt. Commun. 72, 54–59 (1989). https://doi.org/10.1016/0030-4018(89)90255-1

    Article  CAS  Google Scholar 

  40. R.K. Varshney, M.A. Nehme, R. Srivastava, R.V. Ramaswamy, Guided waves in graded-index planar waveguides with nonlinear cover medium. Appl. Opt. 25, 3899–3902 (1986). https://doi.org/10.1364/AO.25.003899

    Article  CAS  PubMed  Google Scholar 

  41. S.J. Al-Bader, H.A. Jamid, Graded-index optical waveguides with nonlinear cladding. J. Opt. Soc. Am. A 5, 374–379 (1988). https://doi.org/10.1364/JOSAA.5.000374

    Article  CAS  Google Scholar 

  42. S.A. Taya, H.M. Kullab, I.M. Qadoura, Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate. J. Opt. Soc. Am. B 30, 2008–2013 (2013). https://doi.org/10.1364/JOSAB.30.002008

    Article  CAS  Google Scholar 

  43. A.J. Hussein, Z.M. Nassar, S.A. Taya, Dispersion properties of slab waveguides with a linear graded-index film and a nonlinear substrate. Microsyst. Technol. 27(7), 2589–2594 (2021). https://doi.org/10.1007/s00542-020-05016-z

    Article  CAS  Google Scholar 

  44. S.A. Taya, A.J. Hussein, I. Colak, An exact solution of a slab waveguide dispersion relation with a linear graded-index guiding layer (TM case). Microsyst. Technol. 28, 1213–1219 (2022). https://doi.org/10.1007/s00542-022-05281-0

    Article  Google Scholar 

  45. A.H.M. Almawgani, S.A. Taya, A.J. Hussein, I. Colak, Dispersion properties of a slab waveguide with a graded-index core layer and a nonlinear cladding using the WKB approximation method. J. Opt. Soc. Am. B 39, 1606–1613 (2022). https://doi.org/10.1364/JOSAB.458569

    Article  CAS  Google Scholar 

  46. J.M. Kubica, Analysis of planar waveguides with a thin overlayer and nonlinear cladding. Opt. Quant. Electron. 55, 137 (2023). https://doi.org/10.1007/s11082-022-04390-4

    Article  CAS  Google Scholar 

  47. S.A. Taya, A.J. Hussein, O.M. Ramahi, I. Colak, Y.B. Chaouche, Dispersion curves of a slab waveguide with a nonlinear covering medium and an exponential graded-index thin film (transverse magnetic case). J. Opt. Soc. Am. B 38, 3237–3243 (2021). https://doi.org/10.1364/JOSAB.439034

    Article  Google Scholar 

  48. A.J. Hussein, S.A. Taya, D. Vigneswaran, R. Udiayakumar, A. Upadhyay, T. Anwar, I.S. Amiri, Universal dispersion curves of a planar waveguide with an exponential graded-index guiding layer and a nonlinear cladding. Results Phys. 20, 103734 (2021). https://doi.org/10.1016/j.rinp.2020.103734

    Article  Google Scholar 

  49. S.-Y. Huang, S. Wang, Ray optics of a planar waveguide with an exponential index profile. J. Appl. Phys. 55(4), 647–651 (1984). https://doi.org/10.1063/1.333117

    Article  MathSciNet  CAS  Google Scholar 

  50. A.M. Shutyi, D.I. Sementsov, A.V. Kazakevich, D.G. Sannikov, Waveguide regimes of a graded-index planar waveguide with cladding. Tech. Phys. 44(11), 1329–1333 (1999). https://doi.org/10.1134/1.1259518

    Article  CAS  Google Scholar 

  51. D.G. Sannikov, D.I. Sementsov, A.M. Shutyi, A.V. Kazakevich, Beam model of waveguide regimes in a multilayer graded-index waveguide. Tech. Phys. Lett. 25, 977–979 (1999). https://doi.org/10.1134/1.1262699

    Article  CAS  Google Scholar 

  52. S.E. Savotchenko, Surface waves propagating along the interface separating an exponential graded-index medium and the medium with a step change in the dielectric constant. Optik 271(12), 170092 (2022). https://doi.org/10.1016/j.ijleo.2022.170092

    Article  MathSciNet  Google Scholar 

  53. S.E. Savotchenko, Waveguide properties of interface separating a photorefractive crystal with diffusion nonlinearity and an exponential graded-index medium. Phys. Lett. A 455(12), 128516 (2022). https://doi.org/10.1016/j.physleta.2022.128516

    Article  MathSciNet  CAS  Google Scholar 

  54. S.E. Savotchenko, Nonlinear guided wave propagation along layers with the exponential index profile, constant index and the Kerr nonlinearity. Optik 276(4), 170689 (2023). https://doi.org/10.1016/j.ijleo.2023.170689

    Article  Google Scholar 

  55. S.E. Savotchenko, The reduction of nonlinear response in near-surface layers by adjusting the electric field amplitude. J. Opt. 23(4), 045503 (2021). https://doi.org/10.1088/2040-8986/abeb2c

    Article  Google Scholar 

  56. S.E. Savotchenko, Modes of suppression of a negative nonlinear response in near-surface layers controlled by an electric field strength in a crystal with a screening coating. Roman. J. Phys. 67(1–2), 202 (2022)

    MathSciNet  Google Scholar 

  57. S.E. Savotchenko, Suppression of a self-focusing nonlinearity in near-surface layers by an electric field in a crystal with a fully shielding coating. Opt. Quant. Electron. 54(5), 305 (2022). https://doi.org/10.1007/s11082-022-03696-7

    Article  Google Scholar 

  58. S.E. Savotchenko, Nonlinear waves in a waveguide with a linear spatial profile of the refractive index and a near-surface layer with disappearing nonlinearity. Optik 272(2), 170373 (2023). https://doi.org/10.1016/j.ijleo.2022.170373

    Article  Google Scholar 

  59. O.V. Korovai, P.I. Khadzhi, Nonlinear surface waves in a symmetrical three-layer structure caused by the generation of excitons and biexcitons in semiconductors. Phys. Solid State 45, 386–390 (2003). https://doi.org/10.1134/1.1553548

    Article  CAS  Google Scholar 

  60. S. Gatz, J. Herrmann, Soliton propagation in materials with saturable nonlinearity. J. Opt. Soc. Am. B 8, 2296–2302 (1991)

    Article  CAS  Google Scholar 

  61. J. Herrmann, Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region. J. Opt. Soc. Am. B 8, 1507–1511 (1991). https://doi.org/10.1364/JOSAB.8.001507

    Article  MathSciNet  CAS  Google Scholar 

  62. S. Bian, J. Frejlich, K.H. Ringhofer, Photorefractive saturable Kerr-type nonlinearity in photovoltaic crystals. Phys. Rev. Lett. 78, 4035–4038 (1997). https://doi.org/10.1103/PhysRevLett.78.4035

    Article  CAS  Google Scholar 

  63. J.M. Christian, G.S. McDonald, P. Chamorro-Posada, Bistable Helmholtz bright solitons in saturable materials. J. Opt. Soc. Am. B 26(12), 2323–2330 (2009). https://doi.org/10.1364/JOSAB.26.002323

    Article  MathSciNet  CAS  Google Scholar 

  64. J. Wu, P. Jia, S. Wang, X. Wang, J. Yuan, L. Wang, Y. Hu, Z. Chen, J. Xu, Measuring saturable nonlinearity in atomic vapor via direct spatial mapping. Opt. Express 30, 43012–43020 (2022). https://doi.org/10.1364/OE.472652

    Article  CAS  PubMed  Google Scholar 

  65. P. Li, D. Mihalache, B.A. Malomed, Optical solitons in media with focusing and defocusing saturable nonlinearity and a parity-time-symmetric external potential. Phil. Trans. R. Soc. A 376, 20170378 (2018). https://doi.org/10.1098/rsta.2017.0378

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  66. P.I. Khadzhi, L.V. Fedorov, Nonlinear surface waves for the simplest model of nonlinear medium. Phys. Tech. Lett. 61, 110–113 (1991)

    Google Scholar 

  67. N.N. Beletsky, E.A. Hasan, Closed dispersion curves for electromagnetic TE waves in a nonlinear film. Phys. of the Sol. St. 36, 647–652 (1994)

    Google Scholar 

  68. K.D. Lyakhomskaya, P.I. Hadji, self-reflection effect in the simplest non-linear medium. Tech. Phys. 70, 86–90 (2000)

    Google Scholar 

  69. A. Schuzgen, N. Peyghambarian, S. Hughes, Doppler shifted self reflection from a semiconductor. Phys. Stat. Sol. (b) 206, 125–130 (1999). https://doi.org/10.1002/(SICI)1521-3951(199803)206:1%3C125::AID-PSSB125%3E3.0.CO;2-8

    Article  Google Scholar 

  70. E.C. Jarque, V.A. Malyshev, Nonlinear reflection from a dense saturable absorber: from stability to chaos. Opt. Commun. 142, 66–70 (1997). https://doi.org/10.1016/S0030-4018(97)00275-7

    Article  CAS  Google Scholar 

  71. N. N. Rosanov, Nonlinear radiation reflection. In: Spatial hysteresis and optical patterns. Springer Series in Synergetics. Springer, Berlin (2002) 177–205. https://doi.org/10.1007/978-3-662-04792-7_5.

  72. P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, New results on optical phase conjugation in semiconductor-doped glasses. J. Opt. Soc. Am. B 4, 5–13 (1987). https://doi.org/10.1364/JOSAB.4.000005

    Article  CAS  Google Scholar 

  73. J.-L. Coutaz, M. Kull, Saturation of the nonlinear index of refraction in semiconductor-doped glass. J. Opt. Soc. Am. B 8, 95–98 (1991). https://doi.org/10.1364/JOSAB.8.000095

    Article  CAS  Google Scholar 

  74. T. Catunda, L.A. Cury, Transverse self-phase modulation in ruby and GdAlO3:Cr+3 crystals. J. Opt. Soc. Am. B 7, 1445–1455 (1990). https://doi.org/10.1364/JOSAB.7.001445

    Article  CAS  Google Scholar 

  75. S. Wang, C. Zhang, R.B. Gross, R.R. Birde, The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin. Opt. Commun. 112, 296–301 (1994). https://doi.org/10.1016/0030-4018(94)90634-3

    Article  Google Scholar 

  76. Q. WangSong, X. Wang, R.R. Birge, J.D. Downie, D. Timucin, C. Gary, Propagation of a Gaussian beam in a bacteriorhodopsin film. J. Opt. Soc. Am. B 15, 1602–1609 (1998). https://doi.org/10.1364/JOSAB.15.001602

    Article  Google Scholar 

  77. Y.V. Kartashov, F. Ye, V.A. Vysloukh, L. Torner, Surface waves in defocusing thermal media. Opt. Lett. 32, 2260–2262 (2007). https://doi.org/10.1364/OL.32.002260

    Article  PubMed  Google Scholar 

  78. Y.V. Kartashov, V.A. Vysloukh, L. Torner, Ring surface waves in thermal nonlinear media. Opt. Express 15, 16216–16221 (2007). https://doi.org/10.1364/OE.15.016216

    Article  PubMed  Google Scholar 

  79. D.P. Yang, Z.P. Chen, F. Zhao, H.Y. Yu, T.H. Zhang, J.G. Tian, J.J. Xu, Observation of photorefractive surface waves in self-defocusing LiNbO3: Fe crystal. Opt. Lett. 38(16), 153093 (2013). https://doi.org/10.1364/OL.38.003093

    Article  CAS  Google Scholar 

  80. V.K. Chaubey, K.K. Dey, P. Khastgir, Field intensity and power confinement of four-layer slab waveguides with various refractive index profiles in the guiding region. J. Optic. Commun. 15, 95–100 (1994). https://doi.org/10.1515/JOC.1994.15.3.95

    Article  Google Scholar 

  81. Y.-Z. Huang, Z. Pan, R.-H. Wu, Analysis of the optical confinement factor in semiconductor lasers. J. Appl. Phys. 79, 3827–3830 (1996). https://doi.org/10.1063/1.361809

    Article  CAS  Google Scholar 

  82. M. Aellen, D.J. Norris, Understanding optical gain: which confinement factor is correct? ACS Photon. 9(11), 3498–3505 (2022). https://doi.org/10.1021/acsphotonics.2c01222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried using equipment of the Center of High Technologies of the Belgorod V. G. Shukhov State Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Ethics declarations

Competing interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Light localization near an interface between media with an exponential permittivity profile and a sharply vanishing Kerr nonlinearity with an increasing light intensity. Eur. Phys. J. Plus 139, 155 (2024). https://doi.org/10.1140/epjp/s13360-024-04967-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04967-w

Navigation