Skip to main content
Log in

Doughnut effect with relativistic electrons and a Si crystal

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present here the results of an experimental and theoretical study of the transmission of relativistic electrons through the  <\(100\)> axial channels of a Si crystal. The electron kinetic energy is 255 MeV and the crystal thickness 470 nm. The measurements were done for different tilt angles of the channel axis relative to the velocity vector of the incident electron beam. The calculations have been performed using the theory of crystal rainbows. The interaction of an incident electron and a crystal’s atom has been described by Molière’s approximation of the Thomas–Fermi interaction potential. We have used the continuum approximation, included the thermal vibrations of the crystal’s atoms, and disregarded the energy loss and the dispersion of the channeling angle of the electrons, caused by their collisions with the crystal’s atoms. The angular distributions of transmitted electrons have been generated by solving the electron equations of motion and using a computer simulation method. They have been analyzed via the corresponding rainbow patterns. The comparison of the obtained experimental and theoretical results for two values of the tilt angle has demonstrated that the doughnut effect in axial electron channeling is the rainbow effect with a tilted crystal.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request].

References

  1. D.S. Gemmell, Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 48, 129 (1974)

    Article  ADS  Google Scholar 

  2. N. Nešković, The effect of transverse correlations in ion channeling in very thin crystals. Oak Ridge Nat. Lab. Rep. 6004, 203 (1983)

    Google Scholar 

  3. N. Nešković, Rainbow effect in ion channeling. Phys. Rev. B 33, 6030 (1986)

    Article  ADS  Google Scholar 

  4. R. Thom, Structural Stability and Morphogenesis (Benjamin, Reading, 1975)

  5. N. Nešković, B. Perović, Ion channeling and catastrophe theory. Phys. Rev. Lett. 59, 308 (1987)

    Article  ADS  PubMed  Google Scholar 

  6. N. Nešković, G. Kapetanović, S. Petrović, B. Perović, The X9 catastrophe as the organizing center of crystal rainbows. Phys. Lett. A 179, 343 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Nešković, S. Petrović, G. Kapetanović, B. Perović, W.N. Lennard, Crystal rainbows in the cases of square very thin crystals with one atomic string per primitive cell. Nucl. Instr. Meth. Phys. Res. B 93, 249 (1994)

    Article  ADS  Google Scholar 

  8. S. Petrović, L. Miletić, N. Nešković, Theory of rainbows in thin crystals: The explanation of ion channeling applied to Ne10+ ions transmitted through a Si thin crystal. Phys. Rev. B 61, 184 (2000)

    Article  ADS  Google Scholar 

  9. N. Nešković, S. Petrović, L. Živković, Rainbows with a Si thin crystal. Eur. Phys. J. B. 18, 553 (2000)

    Article  ADS  Google Scholar 

  10. N. Nešković, S. Petrović, M. Ćosić, Rainbows in Channeling of Charged Particles in Crystals and Nanotubes (Springer, Cham, 2017)

    Book  Google Scholar 

  11. H.F. Krause, S. Datz, P.F. Dittner, J. Gomez del Campo, P.D. Miller, C.D. Moak, N. Nešković, P.L. Pepmiller, Rainbow effect in axial ion channeling. Phys. Rev. B 33, 6036 (1986)

    Article  ADS  CAS  Google Scholar 

  12. H.F. Krause, J.H. Barrett, S. Datz, P.F. Dittner, N.L. Jones, J. Gomez del Campo, C.R. Vane, Angular distribution of ions axially channeled in a very thin crystal: Experimental and theoretical results. Phys. Rev. A 49, 283 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Z.Y. Dang, M. Motapothula, Y.S. Ow, T. Venkatesan, M.B.H. Breese, M.A. Rana, A. Osman, Fabrication of large-area ultra-thin single crystal silicon membranes. Appl. Phys. Lett. 99, 223105 (2011)

    Article  ADS  Google Scholar 

  14. M. Motapothula, Z.Y. Dang, T. Venkatesan, M.B.H. Breese, M.A. Rana, A. Osman, Axial ion channeling patterns from ultra-thin silicon membranes. Nucl. Instr. Meth. Phys. Res. B 283, 29 (2012)

    Article  ADS  CAS  Google Scholar 

  15. M. Motapothula, Z.Y. Dang, T. Venkatesan, M.B.H. Breese, M.A. Rana, A. Osman, Influence of the narrow {111} planes on axial and planar ion channeling. Phys. Rev. Lett. 108, 195502 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. M. Motapothula, Z.Y. Dang, T. Venkatesan, M.B.H. Breese, A study of ion channeling patterns at minor axes in silicon. Nucl. Instr. Meth. Phys. Res. B 330, 24 (2014)

    Article  ADS  CAS  Google Scholar 

  17. S. Petrović, D. Borka, N. Nešković, Rainbows in transmission of high energy protons through carbon nanotubes. Eur. Phys. J. B 44, 41 (2005)

    Article  ADS  Google Scholar 

  18. S. Petrović, M. Ćosić, N. Nešković, Quantum rainbow channeling of positrons in very short carbon nanotubes. Phys. Rev. A 88, 012902 (2013)

    Article  ADS  Google Scholar 

  19. S.P. Fomin, N.F. Shulga, Rainbow scattering and orbiting of fast particles in crystals. Phys. Lett. 73A, 131 (1979)

    Article  ADS  CAS  Google Scholar 

  20. N.F. Shulga, V.I. Truten, Interference effects in string scattering of fast particles in crystals. Phys. Lett. 96A, 307 (1983)

    Article  ADS  CAS  Google Scholar 

  21. N.F. Shulga, V.I. Truten, S.P. Fomin, Orientation effects in interaction of high energy particles with strings of atoms. Sov. Phys. JETP 60, 145 (1984)

    ADS  Google Scholar 

  22. N.F. Shulga, S.N. Shulga, Scattering of ultrarelativistic electrons in ultrathin crystals. Phys. Lett. B 769, 141 (2017)

    Article  ADS  CAS  Google Scholar 

  23. S.N. Shulga, N.F. Shulga, S. Barsuk, I. Chaikovska, R. Chehab, On classical and quantum effects at scattering of ultrarelativistic electrons in ultrathin crystals. Nucl. Instr. Meth. Phys. Res. B 402, 16 (2017)

    Article  ADS  CAS  Google Scholar 

  24. Y. Takabayashi, Yu.L. Pivovarov, T.A. Takhfatullin, First observation of scattering of sub-GeV electrons in ultrathin Si crystal at planar alignment and its relevance to crystal-assisted 1D rainbow scattering. Phys. Lett. B 785, 347 (2018)

    Article  ADS  CAS  Google Scholar 

  25. M. Ćosić, S. Petrović, Y. Takabayashi, Classical patterns in the quantum rainbow channeling of high energy electrons. Phys. Rev. A 103, 022818 (2021)

    Article  ADS  Google Scholar 

  26. L.T. Chadderton, H.E. Eisen, On the transmission of energetic protons through very thin crystals. Phil. Mag. 20, 195 (1969)

    Article  ADS  CAS  Google Scholar 

  27. D.D. Armstrong, W.M. Gibson, A. Goland, J.A. Golovchenko, R.A. Levesque, R.L. Meek, H.E. Wegner, A qualitative description of the transverse motion of axial channeled particles in thin crystals. Radiat. Eff. 12, 143 (1973)

    Article  ADS  Google Scholar 

  28. V.V. Kudrin, S.A. Vorobiev, About the intensity distribution of the swift positive and negative particles after thin crystal. Radiat. Eff. 21, 145 (1974)

    Article  ADS  CAS  Google Scholar 

  29. V.V. Kudrin, S.A. Vorobiev, Small-angle scattering of swift electrons and positrons in a crystal. Radiat. Eff. 25, 119 (1975)

    Article  ADS  CAS  Google Scholar 

  30. U. Schiebel, A. Neufert, G. Clausnitzer, Transmission and small angle scattering of 15 MeV electrons in silicon single crystals. Radiat. Eff. 26, 57 (1976)

    Article  ADS  Google Scholar 

  31. J.S. Rosner, W.M. Gibson, J.A. Golovchenko, A.N. Goland, H.E. Wagner, Quantitative study of the transmission of axially channeled protons in thin silicon crystals. Phys. Rev. B 18, 1066 (1978)

    Article  ADS  CAS  Google Scholar 

  32. E. Uggerhøj, Channeling in the GeV region. Nucl. Instr. Meth. 170, 105 (1980)

    Article  Google Scholar 

  33. S.K. Andersen, O. Fich, H. Nielsen, H.E. Schiøtt, E. Uggerhøj, C. Vraast Thomsen, G. Charpak, G. Petersen, F. Sauli, J.P. Ponpon, P. Siffert, Influence of channeling on scattering of 2–15 GeV/c protons, π+, and π incident on Si and Ge crystals. Nucl. Phys. B 167, 1 (1980)

    Article  ADS  Google Scholar 

  34. K. Kirsebom, R. Medenwaldt, U. Mikkelsen, S.P. Møller, K. Paludan, E. Uggerhøj, T. Worm, K. Elsener, S. Ballestrero, P. Sona, J. Romano, S.H. Connell, J.P.F. Sellschop, R.O. Avakian, A.E. Avetisian, S.P. Taroian, Experimental investigation of photon multiplicity and radiation cooling for 150 GeV electrons/positrons traversing diamond and Si crystals. Nucl. Instr. Meth. Phys. Res. B 119, 79 (1996)

    Article  ADS  CAS  Google Scholar 

  35. K. Kirsebom, U. Mikkelsen, E. Uggerhøj, K. Elsener, S. Ballestrero, P. Sona, S.H. Connell, J.P.F. Sellschop, Z.Z. Vilakazi, Radiation emission and its influence on the motion of multi-GeV electrons and positrons incident on a single diamond crystal. Nucl. Instr. Meth. Phys. Res. B 174, 274 (2001)

    Article  ADS  CAS  Google Scholar 

  36. O.V. Bogdanov, Yu.L. Pivovarov, Y. Takabayashi, T.A. Tukhfatullin, Peculiarities of angular distribution of electrons at Si <100> channeling. J. Phys. Conf. Ser. 357, 012030 (2012)

    Article  Google Scholar 

  37. N. Nešković, S. Petrović, D. Borka, S. Kossionides, Rainbows with a tilted <111> Si very thin crystal. Phys. Lett. A 304, 114 (2002)

    Article  ADS  Google Scholar 

  38. D. Borka, S. Petrović, N. Nešković, Doughnuts with a <110> very thin Si crystal. J. Electron Spectrosc. 129, 183 (2003)

    Article  CAS  Google Scholar 

  39. M. Motapothula, S. Petrović, N. Nešković, Z.Y. Dang, M.B.H. Breese, M.A. Rana, A. Osman, Origin of ringlike angular distributions observed in rainbow channeling in ultrathin crystals. Phys. Rev. B 86, 205426 (2012)

    Article  ADS  Google Scholar 

  40. Y. Takabayashi, T. Kaneyasu, Y. Iwasaki, Development of a beamline for the study of interactions between a relativistic electron beam and crystals at the SAGA Light Source. Nuovo Cim. C 34, 221 (2011)

    Google Scholar 

  41. H. Backe, W. Lauth, T.N. Tran Thi, Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI. J. Instr. 13, C04022 (2018)

    Article  Google Scholar 

  42. L. Miletić, S. Petrović, N. Nešković, Decay of zero-degree focusing of channeled ions. Nucl. Instr. Meth. Phys. Res. B 115, 337 (1996)

    Article  ADS  Google Scholar 

  43. L. Miletić, S. Petrović, N. Nešković, Energy dependence of zero-degree focusing of channeled ions. Radiat. Eff. Def. Solids 141, 235 (1997)

    Article  ADS  Google Scholar 

  44. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 34(14), 1–64 (1965)

    Google Scholar 

  45. M.E. Straumanis, E.Z. Aka, Lattice parameters, coefficients of thermal expansion, and atomic weights of purest silicon and germanium. J. Appl. Phys. 23, 330 (1952)

    Article  ADS  CAS  Google Scholar 

  46. B.W. Batterman, D.R. Chipman, Vibrational amplitudes in germanium and silicon. Phys. Rev. 127, 690 (1962)

    Article  ADS  CAS  Google Scholar 

  47. Y.S. Umanskii, V.I. Prilepskii, Elastic vibration spectra and characteristic temperatures of germanium and silicon. Sov. Phys. Solid State 7, 2399 (1966)

    Google Scholar 

  48. D.S. Jones, Incomplete Bessel functions I, Proc. Ed. Math. Soc. 50, 173 (2007)

    Article  MathSciNet  Google Scholar 

  49. F.E. Harris, J.G. Fripiat, Methods for incomplete Bessel function evaluation. Int. J. Quantum Chem. 109, 1728 (2009)

    Article  ADS  CAS  Google Scholar 

  50. M. Ćosić, M. Hadžijojić, and N. Nešković, to be published.

Download references

Acknowledgements

The theoretical part of the research presented in this paper was funded by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia through the Grant No. 451-03-47/2023-01/200017, with the calculations carried out partly using the Hybrilit heterogeneous cluster computer at the Joint Institute for Nuclear Research, Dubna, Russia. The experimental part of the work was supported in part by JSPS KAKENHI Grant Number JP17K05483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ćosić.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nešković, N., Ćosić, M. & Takabayashi, Y. Doughnut effect with relativistic electrons and a Si crystal. Eur. Phys. J. Plus 139, 196 (2024). https://doi.org/10.1140/epjp/s13360-024-04963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04963-0

Navigation