Skip to main content
Log in

Analysis of Caputo–Katugampola fractional differential system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we propose the approach of \(m_{\rho }\)-Laplace transform and implement it to the stability of Caputo–Katugampola fractional differential system (CKFDS). First, the sufficient condition of existence of \(m_{\rho }\)-Laplace transform and the well-posedness of the inverse \(m_{\rho }\)-Laplace transform are clarified, respectively. In addition, some properties of \(m_{\rho }\)-Laplace transform, including Katugampola fractional calculus and the corresponding differential system, are also presented. Then, in view of \(m_{\rho }\)-Laplace transform, the stability criteria of solutions to linear CKFDS with and without delay are analysed, respectively. Not only that, in light of the observation of decay rate of solution to linear CKFDS, a novel inverse power-logarithmic law is thus obtained as a bridge between the classical inverse power law and the inverse logarithmic law. Finally, to verify the reliability and validity of the proposed approach, some necessary illustrations are given and analysed in detail. Such modified integral transform serves as a potent tool for effectively handling generalized fractional operators with specialized kernels as Katugampola fractional calculus. Furthermore, the CKFDS encompasses a compound inverse power-logarithmic law with specific physical significance, making it indispensable in elucidating anomalous dynamic evolution, particularly in ultra-slow varying processes characterized by long memory and heredity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the experimental data used in this paper are available from the corresponding author upon reasonable request.]

References

  1. P. Zhou, J. Ma, J. Tang, Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 100, 2353–2364 (2020)

    Article  Google Scholar 

  2. H. Sheng, Y.Q. Chen, T.S. Qiu, Fractional Processes and Fractional-Order Signal Processing (Springer-Verlag, London, 2012)

    Book  Google Scholar 

  3. N. Laskin, Fractional Quantum Mechanics (World Scientific Publishing Company, Singapore, 2018)

    Book  Google Scholar 

  4. S. Chakraverty, New Paradigms in Computational Modeling and Its Applications (Academic Press, New York, 2021)

    Google Scholar 

  5. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010)

    Book  Google Scholar 

  6. R.L. Magin, Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    Article  MathSciNet  Google Scholar 

  7. K.B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010)

    Article  Google Scholar 

  8. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  9. I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Article  PubMed  ADS  Google Scholar 

  10. V. Pandey, S. Holm, Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity. Phys. Rev. E 94, 032606 (2016)

    Article  PubMed  ADS  Google Scholar 

  11. H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  ADS  Google Scholar 

  12. D. Baleanu, C. Cattani, M.V. Shitikova, H.G. Sun, Y. Zhang, Focus point on fractional differential equations in physics: recent advantages and future direction. Eur. Phys. J. Plus 134, 554 (2019)

    Article  Google Scholar 

  13. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    Google Scholar 

  14. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science, Amsterdam, 2006)

    Google Scholar 

  15. L. Ma, On the kinetics of Hadamard-type fractional differential systems. Fract. Calc. Appl. Anal. 23, 553–570 (2020)

    Article  MathSciNet  Google Scholar 

  16. L. Ma, B.W. Wu, Finite-time stability of Hadamard fractional differential equations in weighted Banach spaces. Nonlinear Dyn. 107, 3749–3766 (2022)

    Article  Google Scholar 

  17. L. Ma, B.W. Wu, On the fractional Lyapunov exponent for Hadamard-type fractional differential system. Chaos 33, 013117 (2023)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  18. U.N. Katugampola, New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  Google Scholar 

  19. U.N. Katugampola, A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6, 1–15 (2014)

    MathSciNet  Google Scholar 

  20. R. Almeida, A.B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo–Katugampola derivative. J. Comput. Nonlinear Dynam. 11, 061017 (2016)

    Article  Google Scholar 

  21. F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10, 2607–2619 (2017)

    Article  MathSciNet  Google Scholar 

  22. D.R. Anderson, D.J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 063502 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  23. Y. Arioua, L. Ma, On criteria of existence for nonlinear Katugampola fractional differential equations with \(p\)-Laplacian operator. Fractional Differ. Calc. 11, 55–68 (2021)

    Article  MathSciNet  Google Scholar 

  24. H. Chen, U.N. Katugampola, Hermite-Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017)

    Article  MathSciNet  Google Scholar 

  25. B. Łupińska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative. Math. Meth. Appl. Sci. 41, 8985–8996 (2018)

    Article  MathSciNet  Google Scholar 

  26. M. Pandey, T. Som, S. Verma, Fractal dimension of Katugampola fractional integral of vector-valued functions. Eur. Phys. J.-Spec. Top. 230, 3807–3814 (2021)

    Article  Google Scholar 

  27. S. Chandra, S. Abbas, Fractal dimensions of mixed Katugampola fractional integral associated with vector valued functions. Chaos Soliton. Fract. 164, 112648 (2022)

    Article  MathSciNet  Google Scholar 

  28. L. Ma, J. Li, A bridge on Lomnitz type creep laws via generalized fractional calculus. Appl. Math. Model. 116, 786–798 (2023)

    Article  MathSciNet  Google Scholar 

  29. S.D. Zeng, D. Baleanu, Y.R. Bai, G.C. Wu, Fractional differential equations of Caputo–Katugampola type and numerical solutions. Appl. Math. Comput. 315, 549–554 (2017)

    MathSciNet  Google Scholar 

  30. N.V. Hoa, H. Vu, T.M. Duc, Fuzzy fractional differential equations under Caputo–Katugampola fractional derivative approach. Fuzzy Sets Syst. 375, 70–99 (2019)

    Article  MathSciNet  Google Scholar 

  31. A. Ben Makhlouf, A.M. Nagy, Finite-time stability of linear Caputo–Katugampola fractional-order time delay systems. Asian J. Control 22, 297–306 (2020)

    Article  MathSciNet  Google Scholar 

  32. S.H. Xiao, L.J. Li, New result on finite-time stability for Caputo–Katugampola fractional-order neural networks with time delay. Neural Process. Lett. 55, 7951–7966 (2023)

    Article  Google Scholar 

  33. W.H. Deng, C.P. Li, J.H. Lü, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  Google Scholar 

  34. L. Lu, C.D. Huang, X.Y. Song, Bifurcation control of a fractional-order PD control strategy for a delayed fractional-order prey-predator system. Eur. Phys. J. Plus 138, 77 (2023)

    Article  ADS  Google Scholar 

  35. Z.C. Yao, Z.W. Yang, Y.Q. Fu, S.M. Liu, Stability analysis of fractional-order differential equations with multiple delays: the \(1 <\alpha <2\) case. Chinese J. Phys. (2023). https://doi.org/10.1016/j.cjph.2023.03.014

    Article  Google Scholar 

  36. P. Kuchment, The Radon Transform and Medical Imaging (SIAM Society for Industrial and Applied Mathematics, Philadelphia, 2014)

    Google Scholar 

  37. L.C. Andrews, B.K. Shivamoggi, Integral Transforms for Engineers (SPIE Optical Engineering Press, Bellingham, 1999)

    Book  Google Scholar 

  38. K.X. Li, J.G. Peng, Laplace transform and fractional differential equations. Appl. Math. Lett. 24, 2019–2023 (2011)

    Article  MathSciNet  Google Scholar 

  39. H. Sheng, Y. Li, Y.Q. Chen, Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Franklin I. 348, 315–330 (2011)

    Article  MathSciNet  Google Scholar 

  40. S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 17, 1372–1381 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  41. C.P. Li, Z.Q. Li, Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 31, 31 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  42. M.D. Bounoua, C.T. Yin, Hopf bifurcation in Caputo-Hadamard fractional-order differential system. Fractals 30, 2250015 (2022)

    Article  ADS  Google Scholar 

  43. J.H. Tang, C.T. Yin, Analysis of the generalized fractional differential system. AIMS Math. 7, 8654–8684 (2022)

    Article  MathSciNet  Google Scholar 

  44. F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 1, 88–98 (2018)

    Google Scholar 

  45. T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  46. C.P. Li, Z.Q. Li, Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 85, 41 (2020)

    Article  MathSciNet  Google Scholar 

  47. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford at the Clarendon Press, London, 1930)

    Google Scholar 

  48. J. Klamka, Controllability of dynamical systems. Mat. Stosow. 36, 57–75 (2008)

    MathSciNet  Google Scholar 

  49. P. Franklin, Functions of Complex Variables (Prentice-Hall, New York, 1958)

    Google Scholar 

Download references

Acknowledgements

The current research is financially supported by the National Natural Science Foundation of China (Grant nos. 12372010 and 11902108) and the Anhui Provincial Natural Science Foundation (Grant nos. 2308085MA18 and 1908085QA12). The authors are grateful to the anonymous referees for careful reading of this manuscript and valuable comments. And the authors would like to thank the help from the editors too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal conflict of interest that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Chen, Y. Analysis of Caputo–Katugampola fractional differential system. Eur. Phys. J. Plus 139, 171 (2024). https://doi.org/10.1140/epjp/s13360-024-04949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04949-y

Navigation