Skip to main content
Log in

Configuration analysis of the quantum well epi-layer in the InGaAs-based near-infrared light-emitting diodes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An Indium Gallium Arsenide (InGaAs)-based-infrared light emitting diodes (lR-LEDs) chip was numerically analyzed based on different quantum wells (QWs) configurations in heterojunction epi-layers for optimal electro-optics performance. The performance analysis is executed based on carrier concentration, radiative recombination, and electroluminescence. Four structures with different QW configurations are optimized for low current injection with high internal quantum efficiency. The carriers in the single quantum well (SQW) configuration are leaked at high operating current density, thus leading to a droop in the efficiency due to the reduced radiative recombination rate. The results show that the carrier confinement increase significantly enhances the radiative recombination rate for a structure with a low band gap of QW. The optimal configuration consists of 3 QWs in the epi layers and emits 900 nm peak wavelength. The findings indicate that the improved carrier confinement in the active region significantly enhances the light intensity of NlR-LED, which is nearly twice as high in 3QWs than in the SQW structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

No Data associated in the manuscript.

References

  1. X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, E.H. Sargent, Nat. Photonics 10, 253 (2016)

    Article  ADS  CAS  Google Scholar 

  2. L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.R. Hyun, G.G. Malliaras, T. Hanrath, F.W. Wise, Nat. Nanotechnol.Nanotechnol. 7, 369 (2012)

    Article  ADS  CAS  Google Scholar 

  3. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6), 435–446 (2005)

    Article  ADS  PubMed  CAS  Google Scholar 

  4. H.J. Lee, I.K. Jang, W.C. An, L.K. Kwac, H.G. Kim, J.S. Kwak, Curr. Appl. Phys.. Appl. Phys. 17, 1582 (2017)

    Article  ADS  Google Scholar 

  5. N. Balkan, A Erol Semiconductors for Optoelectronics (Springer, Berlin, 2021)

    Book  Google Scholar 

  6. M. Tebyetekerwa, J. Zhang, Z. Xu, T.N. Truong, Z. Yin, Y. Lu, S. Ramakrishna, D. Macdonald, H.T. Nguyen, ACS Nano 14, 14579 (2020)

    Article  PubMed  CAS  Google Scholar 

  7. E. Fred Schubert, Light-Emitting Diodes, 3rd edn. (E. Fred Schubert, 2018).

  8. J.-J. Huang, C.-H. Kuo, S.-C. Shen, Nitride Semiconductor Light-Emitting Diodes (LEDs), 2nd edn. (Woodhead Publishing, Sawston, 2018)

    Google Scholar 

  9. K. Kishino, J. Kamimura, K. Kamiyama, Appl. Phys. Express 5, 031001 (2012)

    Article  ADS  Google Scholar 

  10. I. Yang, S. Kim, M. Niihori, A. Alabadla, Z. Li, L. Li, M.N. Lockrey, D.Y. Choi, I. Aharonovich, J. Wong-Leung, H.H. Tan, C. Jagadish, L. Fu, Nano Energy 71, 104576 (2020)

    Article  CAS  Google Scholar 

  11. I. Yang, Z. Li, J. Wong-Leung, Y. Zhu, Z. Li, N. Gagrani, L. Li, M.N. Lockrey, H. Nguyen, Y. Lu, H.H. Tan, C. Jagadish, L. Fu, Nano Lett. 19, 3821 (2019)

    Article  ADS  PubMed  CAS  Google Scholar 

  12. N. Gupta, H. Kim, N.S. Azar, S.Z. Uddin, D.H. Lien, K.B. Crozier, A. Javey, Nano Lett. 22, 1294 (2022)

    Article  ADS  PubMed  CAS  Google Scholar 

  13. T. Lang, Q. Zhao, X. Jing, G. Guan, S. Fang, Q. Qiang, L. Peng, T. Han, A. Yakovlev, B. Liu, Phys. Chem. Chem. Phys. 25(38), 25985–25992 (2023)

    Article  PubMed  CAS  Google Scholar 

  14. M. Broell, P. Sundgren, A. Rudolph, W. Schmid, A. Vogl, M. Behringer, in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII (SPIE, 2014), p. 90030L

  15. H.J. Lee, E.J.D. Castro, J.H. Kim, C.H. Lee, Appl. Phys. Express 5, 122102 (2012)

    Article  ADS  Google Scholar 

  16. H.J. Lee, J.Y. Park, L.K. Kwac, J. Lee, Micromachines (Basel) 14, 1586 (2023)

    Article  PubMed  Google Scholar 

  17. P.D. Nguyen, M. Kim, Y. Kim, J. Jeon, S. Park, C.S. Kim, Q. Liem Nguyen, B.S. Chun, S.J. Lee, SSRN—Elsevier 1 (2023)

  18. H.S. Choi, D.G. Zheng, H. Kim, J.I. Shim, D.S. Shin, J. Korean Phys. Soc. 66, 1554 (2015)

    Article  ADS  CAS  Google Scholar 

  19. S.F. Yu, S.P. Chang, S.J. Chang, R.M. Lin, H.H. Wu, W.C. Hsu, J. Nanomater.Nanomater. 2012, 65 (2012)

    Google Scholar 

  20. M.A. HairolAman, F.A. Ahmad Fajri, A.F. Ahmad Noorden, S. Daud, M. Bahadoran, M.Z. Abdul Kadir, Phys. Scr. 98, 079501 (2023)

    Article  ADS  Google Scholar 

  21. J.I. Shim, D.P. Han, H. Kim, D.S. Shin, G.B. Lin, D.S. Meyaard, Q. Shan, J. Cho, E. Fred Schubert, H. Shim, C. Sone, Appl. Phys. Lett. 100, 111106 (2012)

    Article  ADS  Google Scholar 

  22. G.B. Lin, D. Meyaard, J. Cho, E. Fred Schubert, H. Shim, C. Sone, Appl. Phys. Lett. 100, (2012)

  23. A. Shaari, F.A. Ahmad Fajri, A.F. Ahmad Noorden, M.Z. Abdul Kadir, S. Daud, Microw. Opt. Technol. Lett.. Opt. Technol. Lett. 63, 970 (2021)

    Article  Google Scholar 

  24. S. Wei, H. Lirong, D. Ziguang, F. Yuchun, Acta Photonica Sinica 35, 1313 (2006)

    Google Scholar 

  25. H. Amano, R. Collazo, C. De Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P.J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L.J. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, Y. Zhang, The 2020 UV emitter roadmap. J. Phys. D Appl. Phys. 53(50), 503001 (2020)

    Article  CAS  Google Scholar 

  26. P. Mishra, B. Janjua, T.K. Ng, C. Shen, A. Salhi, A.Y. Alyamani, M.M. El-Desouki, B.S. Ooi, IEEE Photonics J. 7, 1–9 (2015)

    Article  CAS  Google Scholar 

  27. P.D. Nguyen, M. Kim, Y. Kim, J. Jeon, S. Park, C.S. Kim, Q. Liem Nguyen, B.S. Chun, S.J. Lee, Heliyon 1 (2023).

  28. Yuh-Renn Wu, (n.d.).

  29. D.K. Kim, H.J. Lee, W.C. An, H.G. Kim, L.K. Kwac, J. Korean Phys. Soc. 72, 1020 (2018)

    Article  ADS  CAS  Google Scholar 

  30. S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, W.T. Tsang, Appl. Phys. Lett. 56, 913 (1990)

    Article  ADS  CAS  Google Scholar 

  31. T. Matsuoka, E. Kobayashi, K. Taniguchi, C. Hamaguchi, S. Sasa, Jpn. J. Appl. Phys.. J. Appl. Phys. 29, 2017 (1990)

    Article  ADS  CAS  Google Scholar 

  32. S.J. Pearton, F. Ren, in Encyclopedia of Materials: Science and Technology, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Elsevier, Oxford, 2001), pp. 2101–2108

  33. M. Henini, Microelectron. J.. J. 32, 274 (2001)

    Article  Google Scholar 

  34. V.A. Kulbachinskii, N.A. Yuzeeva, G.B. Galiev, E.A. Klimov, I.S. Vasil’evskii, R.A. Khabibullin, D.S. Ponomarev, Semicond. Sci. Technol.. Sci. Technol. 27, 35021 (2012)

    Article  Google Scholar 

  35. M. Yahyaoui, K. Sellami, K. Boujdaria, M. Chamarro, C. Testelin, Semicond. Sci. Technol.. Sci. Technol. 28, 125018 (2013)

    Article  ADS  Google Scholar 

  36. M. Vasilopoulou, A. Fakharuddin, F.P. García de Arquer, D.G. Georgiadou, H. Kim, A.R. de MohdYusoff, F. Gao, M.K. Nazeeruddin, H.J. Bolink, E.H. Sargent, Nat. Photonics 15, 656 (2021)

    Article  ADS  CAS  Google Scholar 

  37. S. Adachi, J. Appl. Phys. 58, R1–R29 (1985)

    Article  ADS  CAS  Google Scholar 

  38. D. Steiauf, E. Kioupakis, C.G. Van De Walle, ACS Photonics 1, 643 (2014)

    Article  CAS  Google Scholar 

  39. E.T. Yu, J.O. McCaldin, T.C. McGill, in Solid State Physics, ed. by H. Ehrenreich, D. Turnbull (Academic Press, Cambridge, 1992), pp. 1–146.

  40. S. Choi, M.H. Ji, J. Kim, H.J. Kim, M.M. Satter, P.D. Yoder, J.H. Ryou, R.D. Dupuis, A.M. Fischer, F.A. Ponce, Appl. Phys. Lett. 101, 161110 (2012)

    Article  ADS  Google Scholar 

  41. S. Choi, H.J. Kim, S.S. Kim, J. Liu, J. Kim, J.H. Ryou, R.D. Dupuis, A.M. Fischer, F.A. Ponce, Appl. Phys. Lett. 96, 221105 (2010)

    Article  ADS  Google Scholar 

  42. V.P. Sirkeli, O. Yilmazoglu, F. Küppers, H.L. Hartnagel, Semicond. Sci. Technol.. Sci. Technol. 30, 065005 (2015)

    Article  ADS  Google Scholar 

  43. S. Sujecki, Photonics Modelling and Design, 1st edn. (CRC Press, Boca Raton, 2017)

    Google Scholar 

  44. K.W. Böer, U.W. Pohl, Semiconductor Physics, 2nd edn. (Springer, Berlin, 2023)

    Book  Google Scholar 

  45. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  CAS  Google Scholar 

  46. A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. D. Vasileska, S.M. Goodnick, G. Klimeck, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, 1st edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  48. J. Piprek, Semiconductor Optoelectronic Devices—Introduction to Physics and Simulation (Elsevier, Amsterdam, 2003)

    Google Scholar 

  49. J. A. Van Vechten and T. K. Bergstresser, Phys Rev B (1970).

  50. J. Li, G.Q. Zhang, Light-Emitting Diodes: Materials, Processes, Devices and Applications, 1st edn. (Springer, Berlin, 2019)

    Book  Google Scholar 

  51. D. Zhu, C. McAleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, D. Wallis, T. Martin, M. Astles, N. Hylton, P. Dawson, C. Humphreys, J. Appl. Phys. 109, 014502 (2011)

    Article  ADS  Google Scholar 

  52. M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, Y. Park, Appl. Phys. Lett. 93, 041102 (2008)

    Article  ADS  Google Scholar 

  53. D.A. Safonov, A.N. Vinichenko, N.I. Kargin, I.S. Vasil’evskii, Technical Phys. Lett. 44, 145 (2018)

    Article  ADS  CAS  Google Scholar 

  54. K.B. Nam, M.L. Nakarmi, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 83, 878 (2003)

    Article  ADS  CAS  Google Scholar 

  55. J.-H. Ahn, J.-H. Kim, Micro Light Emitting Diode Fabrication and Devices: Micro-LED Technology, 1st edn. (Springer, Singapore, 2021)

    Book  Google Scholar 

  56. R. Toufanian, A. Piryatinski, A.H. Mahler, R. Iyer, J.A. Hollingsworth, A.M. Dennis, Front. Chem. 6, 567 (2018)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  57. S. Nakamura, Science 281, 956 (1998)

    Article  CAS  Google Scholar 

  58. D.Y. Lee, S.H. Han, D.J. Lee, J.W. Lee, D.J. Kim, Y.S. Kim, S.T. Kim, Appl. Phys. Lett. 100, 041119 (2012)

    Article  ADS  Google Scholar 

  59. L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, W.W. Yu, RSC Adv. 5, 54109 (2015)

    Article  ADS  CAS  Google Scholar 

  60. K.N. Bourdakos, D.M.N.M. Dissanayake, T. Lutz, S.R.P. Silva, R.J. Curry, Appl. Phys. Lett. 92, 153311 (2008)

    Article  ADS  Google Scholar 

  61. P. Williams, J. Antoniszyn, M. Manley, Near Infrared Technology, 1st edn. (African Sun Media, Stellenbosch, 2019)

    Google Scholar 

  62. D.M. Johnstone, N. el Massri, C. Moro, S. Spana, X.S. Wang, N. Torres, C. Chabrol, X. De Jaeger, F. Reinhart, S. Purushothuman, A.-L. Benabid, J. Stone, J. Mitrofanis, Neuroscience 274, 93 (2014)

    Article  PubMed  CAS  Google Scholar 

  63. L.J. Xie, A.C. Wang, H.R. Xu, X.P. Fu, Y.B. Ying, Trans. ASABE 59, 399 (2016)

    Article  CAS  Google Scholar 

  64. D.S. Meyaard, Q. Shan, Q. Dai, J. Cho, E.F. Schubert, M.H. Kim, C. Sone, Appl. Phys. Lett. 99, 041112 (2011)

    Article  ADS  Google Scholar 

  65. C.C. Pan, T. Gilbert, N. Pfaff, S. Tanaka, Y. Zhao, D. Feezell, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl. Phys. Express 5, 102103 (2012)

    Article  ADS  Google Scholar 

  66. Y. Zhao, S. Tanaka, C.C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Express 4, 082104 (2011)

    Article  ADS  Google Scholar 

  67. H. Zhao, G. Liu, J. Zhang, J.D. Poplawsky, V. Dierolf, N. Tansu, Opt. Express 19, A991 (2011)

    Article  ADS  PubMed  CAS  Google Scholar 

  68. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, IEEE/OSA J. Disp. Technol. 3, 160 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPTOR and the Department of Physics, International Islamic University Malaysia, in terms of facilities and financially by the Ministry of Education (Malaysia) through Fundamental Research Grant Scheme (Project No.: FRGS 19–033–0641) (References No.: FRGS/1/2018/TK07/UIAM/02/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fakhrurrazi Ahmad Noorden.

Ethics declarations

Conflict of interest

None of the authors of this study has any financial interest or conflict with industries or parties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazmi, A.N., Ahmad Noorden, A.F., Isa, H.N. et al. Configuration analysis of the quantum well epi-layer in the InGaAs-based near-infrared light-emitting diodes. Eur. Phys. J. Plus 139, 153 (2024). https://doi.org/10.1140/epjp/s13360-024-04948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04948-z

Navigation