Skip to main content
Log in

Casimir effect in a Lorentz-violating tensor extension of a scalar field theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the Casimir energy modifications due to the Lorentz-violating CPT-even contribution in an extension of the scalar QED. We have considered the complex scalar field satisfying Dirichlet boundary conditions between two parallel plates separated by a small distance. An appropriate tensor parametrization allowed us to study the Casimir effect in three different configurations: isotropic, anisotropic parity-odd, and anisotropic parity-even. We have shown that the Lorentz-violating contributions can promote either an increase or a decrease in the Casimir energy evaluated in the isotropic configuration, depending on whether the violation parameters are taking as positive or negative values. On the other hand, for the anisotropic parity-even case the Casimir energy only decreases, while for the anisotropic parity-odd cases it only increases. Therefore, from these last two results it seems that the Casimir energy is sensitive to the parity of Lorentz-violating coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data associated in the manuscript.

References

  1. M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rept. 353, 1–205 (2001). https://doi.org/10.1016/S0370-1573(01)00015-1[arXiv:quant-ph/0106045] [quant-ph]

  2. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Int. Ser. Monogr. Phys. 145, 1–768 (2009) Oxford University Press, 2009

  3. H.B.G. Casimir, Indag. Math. 10, 261–263 (1948)

    Google Scholar 

  4. M.J. Sparnaay, Physica 24, 751–764 (1958). https://doi.org/10.1016/S0031-8914(58)80090-7

    Article  ADS  Google Scholar 

  5. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5–8 (1997) [erratum: Phys. Rev. Lett. 81, 5475–5476 (1998)] https://doi.org/10.1103/PhysRevLett.78.5

  6. U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549–4552 (1998). https://doi.org/10.1103/PhysRevLett.81.4549[arXiv:physics/9805038] [physics]

  7. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Rev. Mod. Phys. 81, 1827–1885 (2009). https://doi.org/10.1103/RevModPhys.81.1827[arXiv:0902.4022] [cond-mat.other]

  8. K. Milton, I. Brevik, Symmetry 11(2), 201 (2019). https://doi.org/10.3390/sym11020201

    Article  ADS  Google Scholar 

  9. D.C. Roberts, Y. Pomeau, Phys. Rev. Lett. 95, 145303 (2005). https://doi.org/10.1103/PhysRevLett.95.145303. [arXiv:cond-mat/0503706] [cond-mat.other]

    Article  CAS  PubMed  ADS  Google Scholar 

  10. A. Edery, J. Stat. Mech. Theory Exp. 06007 (2006)

  11. P.T. Song, Ann. Phys. 447, 169144 (2022). https://doi.org/10.1016/j.aop.2022.169144

    Article  CAS  Google Scholar 

  12. P.T. Song, Phys. Lett. A 480, 128964 (2023). https://doi.org/10.1016/j.physleta.2023.128964

    Article  CAS  Google Scholar 

  13. G. Plunien, B. Muller, W. Greiner, Phys. Rept. 134, 87–193 (1986). https://doi.org/10.1016/0370-1573(86)90020-7

    Article  CAS  ADS  Google Scholar 

  14. A. Edery, V. Marachevsky, JHEP 12, 035 (2008). https://doi.org/10.1088/1126-6708/2008/12/035[arXiv:0810.3430] [hep-th]

  15. M.B. Cruz, E.R. Bezerra de Mello, A.Y. Petrov, Phys. Rev. D 96(4), 045019 (2017). https://doi.org/10.1103/PhysRevD.96.045019[arXiv:1705.03331] [hep-th]

  16. A. Edery, Phys. Rev. D 75, 105012 (2007). https://doi.org/10.1103/PhysRevD.75.105012. [arXiv:hep-th/0610173] [hep-th]

    Article  CAS  ADS  Google Scholar 

  17. E. Ponton, E. Poppitz, JHEP 06, 019 (2001). https://doi.org/10.1088/1126-6708/2001/06/019. [arXiv:hep-ph/0105021] [hep-ph]

    Article  ADS  Google Scholar 

  18. A. Edery, J. Phys. A 39, 685–712 (2006). https://doi.org/10.1088/0305-4470/39/3/017[arXiv:math-ph/0510056] [math-ph]

  19. A. Edery, I. MacDonald, JHEP 09, 005 (2007). https://doi.org/10.1088/1126-6708/2007/09/005[arXiv:0708.0392] [hep-th]

  20. A. Edery, V. Marachevsky, Phys. Rev. D 78, 025021 (2008). https://doi.org/10.1103/PhysRevD.78.025021. [arXiv:0805.4038] [hep-th]

    Article  CAS  ADS  Google Scholar 

  21. C.R. Muniz, M.O. Tahim, M.S. Cunha, H.S. Vieira, JCAP 01, 006 (2018). https://doi.org/10.1088/1475-7516/2018/01/006. [arXiv:1510.06655] [gr-qc]

    Article  CAS  ADS  Google Scholar 

  22. G. Alencar, R.N. Costa Filho, M.S. Cunha, C.R. Muniz, Eur. Phys. J. Plus 135(1), 18 (2020). https://doi.org/10.1140/epjp/s13360-019-00044-9[arXiv:1805.01791] [hep-th]

  23. F. Sorge, J.H. Wilson, Phys. Rev. D 100(10), 105007 (2019). https://doi.org/10.1103/PhysRevD.100.105007[arXiv:1909.07357] [gr-qc]

  24. T. Christodoulakis, G.A. Diamandis, B.C. Georgalas, E.C. Vagenas, Phys. Rev. D 64, 124022 (2001). https://doi.org/10.1103/PhysRevD.64.124022. [arXiv:hep-th/0107049] [hep-th]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  25. E.C. Vagenas, Phys. Rev. D 68, 024015 (2003). https://doi.org/10.1103/PhysRevD.68.024015. [arXiv:hep-th/0301149] [hep-th]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  26. G. Lambiase, A. Stabile, A. Stabile, Phys. Rev. D 95(8), 084019 (2017). https://doi.org/10.1103/PhysRevD.95.084019[arXiv:1611.06494] [gr-qc]

  27. L. Buoninfante, G. Lambiase, L. Petruzziello, A. Stabile, Eur. Phys. J. C 79(1), 41 (2019). https://doi.org/10.1140/epjc/s10052-019-6574-1[arXiv:1811.12261] [gr-qc]

  28. C.R. Muniz, V.B. Bezerra, M.S. Cunha, Phys. Rev. D 88, 104035 (2013). https://doi.org/10.1103/PhysRevD.88.104035. [arXiv:1311.2570] [gr-qc]

    Article  CAS  ADS  Google Scholar 

  29. A.F. Ferrari, H.O. Girotti, M. Gomes, A.Y. Petrov, A.J. da Silva, Mod. Phys. Lett. A 28, 1350052 (2013). https://doi.org/10.1142/S0217732313500521. [arXiv:1006.1635] [hep-th]

    Article  ADS  Google Scholar 

  30. I.J. Morales Ulion, E.R. Bezerra de Mello, A.Y. Petrov, Int. J. Mod. Phys. A 30(36), 1550220 (2015). https://doi.org/10.1142/S0217751X15502206[arXiv:1511.00489] [hep-th]

  31. C.R. Muniz, V.B. Bezerra, M.S. Cunha, Ann. Phys. 359, 55–63 (2015). https://doi.org/10.1016/j.aop.2015.04.014[arXiv:1405.5424] [hep-th]

  32. D.R. da Silva, M.B. Cruz, E.R. Bezerra de Mello, Int. J. Mod. Phys. A 34(20), 1950107 (2019). https://doi.org/10.1142/S0217751X19501070[arXiv:1905.01295] [hep-th]

  33. S.A. Franchino-Viñas, S. Mignemi, Nucl. Phys. B 959, 115152 (2020). https://doi.org/10.1016/j.nuclphysb.2020.115152. [arXiv:2005.12610] [hep-th]

    Article  CAS  Google Scholar 

  34. M. Blasone, G. Lambiase, L. Petruzziello, A. Stabile, Eur. Phys. J. C 78(11), 976 (2018). https://doi.org/10.1140/epjc/s10052-018-6464-y[arXiv:1808.04425] [hep-th]

  35. A.M. Escobar-Ruiz, A. Martín-Ruiz, C.A. Escobar, R. Linares, Int. J. Mod. Phys. A 36(23), 2150168 (2021). https://doi.org/10.1142/S0217751X21501682[arXiv:2105.12953] [hep-th]

  36. C.A. Escobar, A. Martín-Ruiz, O.J. Franca, M.A.G. Garcia, Phys. Lett. B 807, 135567 (2020). https://doi.org/10.1016/j.physletb.2020.135567. [arXiv:2005.14217] [hep-th]

    Article  MathSciNet  CAS  Google Scholar 

  37. M.B. Cruz, E.R. Bezerra de Mello, A.Y. Petrov, Phys. Rev. D 99(8), 085012 (2019). https://doi.org/10.1103/PhysRevD.99.085012[arXiv:1812.05428] [hep-th]

  38. V. Barger, D. Marfatia, K. Whisnant, (Princeton Univ. Press, 2012). ISBN 978-0-691-12853-5

  39. V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989). https://doi.org/10.1103/PhysRevD.39.683

    Article  CAS  ADS  Google Scholar 

  40. V.A. Kostelecky, R. Potting, Nucl. Phys. B 359, 545–570 (1991). https://doi.org/10.1016/0550-3213(91)90071-5

    Article  ADS  Google Scholar 

  41. P. Horava, Phys. Rev. D 79, 084008 (2009). https://doi.org/10.1103/PhysRevD.79.084008. [arXiv:0901.3775] [hep-th]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  42. G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, S. Zerbini, Class. Quant. Grav. 33(22), 225014 (2016). https://doi.org/10.1088/0264-9381/33/22/225014[arXiv:1601.00102] [gr-qc]

  43. R. Gambini, J. Pullin, Phys. Rev. D 59, 124021 (1999). https://doi.org/10.1103/PhysRevD.59.124021. [arXiv:gr-qc/9809038] [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Bojowald, H.A. Morales-Tecotl, H. Sahlmann, Phys. Rev. D 71, 084012 (2005). https://doi.org/10.1103/PhysRevD.71.084012. [arXiv:gr-qc/0411101] [gr-qc].

    Article  MathSciNet  CAS  ADS  Google Scholar 

  45. V.A. Kostelecky, R. Potting, Phys. Rev. D 51, 3923–3935 (1995). https://doi.org/10.1103/PhysRevD.51.3923[arXiv:hep-ph/9501341] [hep-ph]

  46. D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760–6774 (1997). https://doi.org/10.1103/PhysRevD.55.6760[arXiv:hep-ph/9703464] [hep-ph]

  47. D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998). https://doi.org/10.1103/PhysRevD.58.116002. [arXiv:hep-ph/9809521] [hep-ph]

    Article  ADS  Google Scholar 

  48. V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004). https://doi.org/10.1103/PhysRevD.69.105009. [arXiv:hep-th/0312310] [hep-th]

    Article  CAS  ADS  Google Scholar 

  49. J.M. Link, M. Reyes, P.M. Yager, J.C. Anjos, I. Bediaga, C. Gobel, J. Magnin, A. Massafferri, J.M. de Miranda, I.M. Pepe, et al., Phys. Lett. B 556, 7–13 (2003). https://doi.org/10.1016/S0370-2693(03)00103-5[arXiv:hep-ex/0208034] [hep-ex]

  50. B. Aubert et al. [BaBar], Phys. Rev. Lett. 100, 131802 (2008). https://doi.org/10.1103/PhysRevLett.100.131802[arXiv:0711.2713] [hep-ex]

  51. D. Babusci et al. [KLOE-2], Phys. Lett. B 730, 89-94 (2014). https://doi.org/10.1016/j.physletb.2014.01.026[arXiv:1312.6818] [hep-ex]

  52. A. Di Domenico et al. [KLOE], Found. Phys. 40, 852–866 (2010). https://doi.org/10.1007/s10701-009-9366-x

  53. V.M. Abazov et al. [D0], Phys. Rev. Lett. 115(16), 161601 (2015). https://doi.org/10.1103/PhysRevLett.115.161601[arXiv:1506.04123] [hep-ex]

  54. R. Aaij et al. [LHCb], Phys. Rev. Lett. 116(24), 241601 (2016). https://doi.org/10.1103/PhysRevLett.116.241601[arXiv:1603.04804] [hep-ex]

  55. P. Adamson et al. [MINOS], Phys. Rev. Lett. 101, 151601 (2008). https://doi.org/10.1103/PhysRevLett.101.151601[arXiv:0806.4945] [hep-ex]

  56. P. Adamson et al. [MINOS], Phys. Rev. Lett. 105, 151601 (2010). https://doi.org/10.1103/PhysRevLett.105.151601[arXiv:1007.2791] [hep-ex]

  57. T. Katori [MiniBooNE], Mod. Phys. Lett. A 27, 1230024 (2012). https://doi.org/10.1142/S0217732312300248[arXiv:1206.6915] [hep-ex]

  58. A.A. Aguilar-Arevalo et al. [MiniBooNE], Phys. Lett. B 718, 1303-1308 (2013). https://doi.org/10.1016/j.physletb.2012.12.020[arXiv:1109.3480] [hep-ex]

  59. R. Jackiw, V.A. Kostelecky, Phys. Rev. Lett. 82, 3572-3575 (1999). https://doi.org/10.1103/PhysRevLett.82.3572[arXiv:hep-ph/9901358] [hep-ph]

  60. V.A. Kostelecky, C.D. Lane, A.G.M. Pickering, Phys. Rev. D 65, 056006 (2002). https://doi.org/10.1103/PhysRevD.65.056006. [arXiv:hep-th/0111123] [hep-th]

    Article  CAS  ADS  Google Scholar 

  61. A.F. Ferrari, J. Furtado, J.F. Assunção, T. Mariz, A.Y. Petrov, EPL 136(2), 21002 (2021). https://doi.org/10.1209/0295-5075/ac419a[arXiv:2109.11901] [hep-th]

  62. J. Furtado, T. Mariz, Phys. Rev. D 89(2), 025021 (2014). https://doi.org/10.1103/PhysRevD.89.025021[arXiv:1401.0492 [hep-ph]]

  63. A.C. Lehum, T. Mariz, J.R. Nascimento, A.Y. Petrov, Phys. Lett. B 790, 129-133 (2019). https://doi.org/10.1016/j.physletb.2019.01.014[arXiv:1802.01368] [hep-th]

  64. A.F. Ferrari, A.C. Lehum, EPL 122(3), 31001 (2018). https://doi.org/10.1209/0295-5075/122/31001[arXiv:1712.02650] [hep-th]

  65. H. Belich, L.D. Bernald, P. Gaete, J.A. Helayël-Neto and F.J.L. Leal, Eur. Phys. J. C 75(6), 291 (2015). https://doi.org/10.1140/epjc/s10052-015-3447-0[arXiv:1502.06126 [hep-th]]

  66. D. Colladay, P. McDonald, Phys. Rev. D 83, 025021 (2011). https://doi.org/10.1103/PhysRevD.83.025021. [arXiv:1010.1781] [hep-ph]

    Article  CAS  ADS  Google Scholar 

  67. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001). https://doi.org/10.1103/PhysRevLett.87.141601. [arXiv:hep-th/0105082] [hep-th]

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  68. M. Hayakawa, Phys. Lett. B 478, 394–400 (2000). https://doi.org/10.1016/S0370-2693(00)00242-2[arXiv:hep-th/9912094] [hep-th]

  69. B.R. Edwards, V.A. Kostelecký, Phys. Lett. B 795, 620–626 (2019). https://doi.org/10.1016/j.physletb.2019.07.012[arXiv:1907.05206] [hep-ph]

  70. B.R. Edwards, V.A. Kostelecky, Phys. Lett. B 786, 319–326 (2018). https://doi.org/10.1016/j.physletb.2018.10.011[arXiv:1809.05535] [hep-th]

  71. S. Hess, Tensors for Physics (2015). https://doi.org/10.1007/978-3-319-12787-3

  72. R. Casana, M.M. Ferreira, A.R. Gomes, F.E.P. dos Santos, Phys. Rev. D 82, 125006 (2010). https://doi.org/10.1103/PhysRevD.82.125006. [arXiv:1010.2776] [hep-th]

    Article  CAS  ADS  Google Scholar 

  73. F.E.P. dos Santos, M.M. Ferreira, Symmetry 10(8), 302 (2018). https://doi.org/10.3390/sym10080302

    Article  ADS  Google Scholar 

  74. L.H. Ryder, (Cambridge University Press, 1996). ISBN 978-0-521-47814-4, 978-1-139-63239-3, 978-0-521-23764-2 https://doi.org/10.1017/CBO9780511813900

  75. K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, River Edge, 2001)

    Book  Google Scholar 

  76. X. Zhai, X. Li, C.J. Feng, Mod. Phys. Lett. A 26, 669–679 (2011). https://doi.org/10.1142/S0217732311035110[arXiv:1008.3020] [hep-th]

  77. V.A. Kostelecky, N. Russell, Rev. Mod. Phys. 83, 11-31 (2011). https://doi.org/10.1103/RevModPhys.83.11[arXiv:0801.0287] [hep-ph]

Download references

Acknowledgements

The authors thank the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), Grant No. PNE0112-00085.01.00/16 (JF), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant No. 200879/2022-7 (RVM) for financial support. R. V. Maluf acknowledges the Departament de Física Teòrica de la Universitat de València for the kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Maluf.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, M.C., Furtado, J. & Maluf, R.V. Casimir effect in a Lorentz-violating tensor extension of a scalar field theory. Eur. Phys. J. Plus 139, 165 (2024). https://doi.org/10.1140/epjp/s13360-024-04947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04947-0

Navigation