Skip to main content
Log in

The randomness and uncertainty in dynamics of lymphatic filariasis: CTMC stochastic approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Lymphatic filariasis represents the primary cause of long-term, permanent disability, and dysfunction in the human immune system. In this study, we have devised and assessed deterministic and continuous-time Markov chain (CTMC) stochastic models to gain insights into the dynamics of lymphatic filariasis and approximate the probabilities of disease extinction or outbreak. The CTMC stochastic model is an adapted version of the existing deterministic model that accounts for uncertainties and variations in disease transmission dynamics. The findings from the deterministic model indicate that disease extinction is possible when \({\mathcal {R}}_0 < 1\), while an outbreak is likely when \({\mathcal {R}}_0 > 1\). Further examination of the deterministic model emphasizes the significant role of asymptomatic individuals in the transmission of lymphatic filariasis. To estimate the probabilities of disease extinction or outbreak, we employed multitype branching processes and numerical simulations. The results demonstrate that lymphatic filariasis outbreaks are more probable when microfilariae parasites are introduced by exposed humans, asymptomatic humans, acutely infected humans, exposed mosquitoes, or infectious mosquitoes. Conversely, the disease is more likely to be eradicated if it originates from chronically infected humans. Utilizing stochastic methods provides a more authentic portrayal of how lymphatic filariasis spreads, granting a better understanding of the spectrum of potential results and their related probabilities. Therefore, stochastic CTMC models become indispensable for generating reliable forecasts and well-informed choices in situations where deterministic models might oversimplify or inaccurately depict the inherent unpredictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data used for this study are included in this paper.

References

  1. S. Surtani, J. Kailashiya, M.A. Ansari, D. Dash, A.K. Yadav, A. Kumar, Platelet functions in lymphatic filariasis patients. Microvasc. Res. 152, 104642 (2024)

    Article  CAS  PubMed  Google Scholar 

  2. WHO, Lymphatic filariasis: World Health Organisation (2022). https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis/

  3. D. Addiss, The 6th meeting of the global alliance to eliminate lymphatic filariasis: a half-time review of lymphatic filariasis elimination and its integration with the control of other neglected tropical diseases(2010)

  4. S. Lustigman, R.K. Prichard, A. Gazzinelli, W.N. Grant, B.A. Boatin, J.S. McCarthy, M.-G. Basáñez, A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Negl. Trop. Dis. 6(4), e1582 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  5. CDC, Parasites—lymphatic filariasis: Centers for Diseases Control and Prevention. https://www.cdc.gov/parasites/lymphaticfilariasis/epi.html (2022)

  6. Centers for Disease Control and Prevention, Lymphatic Filariasis. https://www.cdc.gov/dpdx/lymphaticfilariasis/index.htm (2019). Accessed 26 Jan 2023

  7. J.C. Castillo, S.E. Reynolds, I. Eleftherianos, Insect immune responses to nematode parasites. Trends Parasitol. 27(12), 537–547 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. P. Fischer, S.M. Erickson, K. Fischer, J.F. Fuchs, R.U. Rao, B.M. Christensen, G.J. Weil, Persistence of Brugia malayi DNA in vector and non-vector mosquitoes: implications for xenomonitoring and transmission monitoring of lymphatic filariasis. Am. J. Trop. Med. Hyg. 76(3), 502 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. A.A. Hamza, M.M. Dogara, J.B. Balogun, A.I. Omotayo, K.A. Adeniyi, A.S. Abubakar, A.A. Hafiz, S.S. Abubakar, Entomological surveillance reveals transmission of malaria but not lymphatic filariasis in two communities in north-west nigeria. Parasitol. Res. 123(1), 26 (2024)

    Article  Google Scholar 

  10. M.J. Taylor, A. Hoerauf, M. Bockarie, Lymphatic filariasis and onchocerciasis. The Lancet 376(9747), 1175–1185 (2010)

    Article  Google Scholar 

  11. A. Singal, K. Bisherwal, Integrative medicine and self-care in the treatment of lymphatic filariasis-associated lymphoedema: an effective strategy! Br. J. Dermatol. 190(1), 8–9 (2024)

    Article  Google Scholar 

  12. S. Michael, N. Mbwambo, H. Mruttu, M. Dotto, C. Ndomba, M.d. Silva, F. Makusaro, S. Nandonde, J. Crispin, B.I. Shapiro, et al., Tanzania livestock master plan (2018)

  13. M.A. Stephano, M.M. Mayengo, J.I. Irunde, D. Kuznetsov, Sensitivity analysis and parameters estimation for the transmission of lymphatic filariasis. Heliyon (2023)

  14. J. Paul, Blood and lymphatic infections, in Disease Causing Microbes (Springer, 2024), pp. 247–314

  15. D. Buonfrate, A. Montresor, Z. Bisoffi, F. Tamarozzi, D. Bisanzio, Progress towards the implementation of control programmes for strongyloidiasis in endemic areas: estimation of number of adults in need of ivermectin for strongyloidiasis. Philos. Trans. R. Soc. B 379(1894), 20220433 (2024)

    Article  Google Scholar 

  16. C. Naing, M.A. Whittaker, W.S. Tung, H. Aung, J.W. Mak, Prevalence of zoonotic (Brugian) filariasis in Asia: a proportional meta-analysis. Acta Trop. 249, 107049 (2024)

    Article  PubMed  Google Scholar 

  17. P.M. Mwamtobe, S.M. Simelane, S. Abelman, J.M. Tchuenche, Mathematical analysis of a lymphatic filariasis model with quarantine and treatment. BMC Public Health 17(1), 1–13 (2017)

    Article  Google Scholar 

  18. P. Jambulingam, S. Subramanian, S. De Vlas, C. Vinubala, W. Stolk, Mathematical modelling of lymphatic filariasis elimination programmes in India: required duration of mass drug administration and post-treatment level of infection indicators. Parasites Vectors 9(1), 1–18 (2016)

    Article  Google Scholar 

  19. E. Michael, M.N. Malecela-Lazaro, P.E. Simonsen, E.M. Pedersen, G. Barker, A. Kumar, J.W. Kazura, Mathematical modelling and the control of lymphatic filariasis. Lancet. Infect. Dis. 4(4), 223–234 (2004)

    Article  PubMed  Google Scholar 

  20. S. Swaminathan, P.P. Subash, R. Rengachari, K. Kaliannagounder, D.K. Pradeep, Mathematical models for lymphatic filariasis transmission and control: challenges and prospects. Parasites Vectors 1(1), 1–9 (2008)

    Google Scholar 

  21. W.A. Stolk, C. Stone, S.J. de Vlas, Modelling lymphatic filariasis transmission and control: modelling frameworks, lessons learned and future directions. Adv. Parasitol. 87, 249–291 (2015)

    Article  PubMed  Google Scholar 

  22. A. Alshehri, Z. Shah, R. Jan, Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus. Eur. Phys. J. Plus 138(3), 1–15 (2023)

    Article  Google Scholar 

  23. E.A. Cromwell, C.A. Schmidt, K.T. Kwong, D.M. Pigott, D. Mupfasoni, G. Biswas, S. Shirude, E. Hill, K.M. Donkers, A. Abdoli et al., The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis. Lancet Glob. Health 8(9), e1186–e1194 (2020)

    Article  Google Scholar 

  24. L.J. Allen, An introduction to stochastic epidemic models, in Mathematical Epidemiology (Springer, 2008), pp. 81–130

  25. L.J. Allen, An Introduction to Stochastic Processes with Applications to Biology (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  26. L.J. Allen, G.E. Lahodny Jr., Extinction thresholds in deterministic and stochastic epidemic models. J. Biol. Dyn. 6(2), 590–611 (2012)

    Article  PubMed  Google Scholar 

  27. L.J. Allen, P. van den Driessche, Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-time infectious disease models. Math. Biosci. 243(1), 99–108 (2013)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  28. L.J. Allen, A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Model. 2(2), 128–142 (2017)

    PubMed  PubMed Central  Google Scholar 

  29. M. Maliyoni, Probability of disease extinction or outbreak in a stochastic epidemic model for west Nile virus dynamics in birds. Acta Biotheor. 69, 1–26 (2020)

    Google Scholar 

  30. M. Maliyoni, F. Chirove, H.D. Gaff, K.S. Govinder, A stochastic tick-borne disease model: exploring the probability of pathogen persistence. Bull. Math. Biol. 79(9), 1999–2021 (2017)

    Article  MathSciNet  PubMed  Google Scholar 

  31. M.A. Stephano, J.I. Irunde, J.A. Mwasunda, C.S. Chacha, A continuous time Markov chain model for the dynamics of bovine tuberculosis in humans and cattle. Ricerche di Matematica, 1–27 (2022)

  32. S. Swaminathan, Modelling Lymphatic Filariasis: Transmission and Control (2004)

  33. V. Lakshmikantham, S. Leela, A.A. Martynyuk, Stability Analysis of Nonlinear Systems (Springer, Berlin, 1989)

    Google Scholar 

  34. K. Dietz, The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2(1), 23–41 (1993)

    Article  CAS  PubMed  Google Scholar 

  35. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361 (2004)

    Article  MathSciNet  PubMed  Google Scholar 

  36. C. Briat, Sign properties of Metzler matrices with applications. Linear Algebra Appl. 515, 53–86 (2017)

    Article  MathSciNet  Google Scholar 

  37. T. Kaczorek, Positive stable realizations with system Metzler matrices, in Archives of Control Sciences (2011)

  38. M. Ozair, A.A. Lashari, I.H. Jung, K.O. Okosun et al., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence. Discrete Dyn. Nat. Soc. 2012 (2012)

  39. G. Zaman, Y.H. Kang, I.H. Jung, Stability analysis and optimal vaccination of an sir epidemic model. Biosystems 93(3), 240–249 (2008)

    Article  PubMed  Google Scholar 

  40. B. Gomero, Latin hypercube sampling and partial rank correlation coefficient analysis applied to an optimal control problem (2012)

  41. S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  42. Z. Neufeld, H. Khataee, A. Czirok, Targeted adaptive isolation strategy for covid-19 pandemic. Infect. Dis. Model. 5, 357–361 (2020)

    PubMed  PubMed Central  Google Scholar 

  43. G. Lahodny Jr., R. Gautam, R. Ivanek, Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease. J. Biol. Dyn. 9(sup1), 128–155 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  44. G.E. Lahodny, L.J. Allen, Probability of a disease outbreak in stochastic multipatch epidemic models. Bull. Math. Biol. 75(7), 1157–1180 (2013)

    Article  MathSciNet  PubMed  Google Scholar 

  45. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  PubMed  Google Scholar 

  46. E. Michael, M.N. Malecela-Lazaro, J.W. Kazura, Epidemiological modelling for monitoring and evaluation of lymphatic filariasis control. Adv. Parasitol. 65, 191–237 (2007)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mussa A. Stephano.

Ethics declarations

Competing interests

The authors declare that they have no competing interests upon publication of this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephano, M.A., Irunde, J.I., Mayengo, M.M. et al. The randomness and uncertainty in dynamics of lymphatic filariasis: CTMC stochastic approach. Eur. Phys. J. Plus 139, 162 (2024). https://doi.org/10.1140/epjp/s13360-024-04945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04945-2

Navigation