Skip to main content
Log in

Topological entropy characterization of zeolite EDI and its application in predicting molecular interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Topological indices are numerical measures that have a predominant role in QSAR/QSPR studies. Researchers are interested in developing these models because of their implications in computer-aided drug design and their effectiveness in predicting molecular properties. In this study, we have considered the molecular framework of a rare barium fibrous nano-zeolite known as edingtonite (EDI) and explored its topological characterization along with the information entropy measures. We have presented generalized expressions that compute bond additive and self-powered multiplicative indices. Further, we incorporated these measures to attain the information entropy of the framework due to its applications in determining the stability and molecular energies in the system. By utilizing the information entropy measures, we developed a nonlinear exponential regression model to investigate the various molecular interactions in the system. The results of this study provide a feasible solution to calculate the total energy of the system by reducing the computational complexity via density-functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript. The manuscript has associated data in a data repository.

References

  1. C.J. Rhodes, Properties and applications of zeolites. Sci. Prog. 93(3), 223–284 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Ramesh, D.D. Reddy, Zeolites and their potential uses in agriculture. Adv. Agron. 113, 219–241 (2011)

    Article  Google Scholar 

  3. P. Sharma, P.P. Sutar, H. Xiao, Q. Zhang, The untapped potential of zeolites in techno-augmentation of the biomaterials and food industrial processing operations: A review. J. Future Foods 3(2), 127–141 (2023)

    Article  Google Scholar 

  4. Y. Chai, W. Dai, G. Wu, N. Guan, L. Li, Confinement in a zeolite and zeolite catalysis. Acc. Chem. Res. 54, 2894–2904 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. Q. Zhang, S. Gao, J. Yu, Metal sites in zeolites: synthesis, characterization, and catalysis. Chem. Rev. 123(9), 6039–6106 (2022)

    Article  PubMed  Google Scholar 

  6. C. Baerlocher, L. McCusker, Database of zeolite structures. http://www.iza-structure.org/databases

  7. E. Galli, Crystal structure refinement of edingtonite. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 32(6), 1623–1627 (1976)

    Article  ADS  Google Scholar 

  8. D. Novembre, C. Pace, D. Gimeno, Syntheses and characterization of zeolites K-F and W type using a diatomite precursor. Miner. Mag. 78(5), 1209–1225 (2014)

    Article  Google Scholar 

  9. C. Belver, M.A. Vicente, Easy synthesis of K-F zeolite from kaolin, and characterization of this zeolite. J. Chem. Educ. 83(10), 1541 (2006)

    Article  CAS  Google Scholar 

  10. E. Kianfar, Nanozeolites: synthesized, properties, applications. J. Sol-Gel Sci. Technol. 91(2), 415–429 (2019)

    Article  CAS  Google Scholar 

  11. S.F. Wong, K. Deekomwong, J. Wittayakun, T.C. Ling et al., Crystal growth study of K-F nanozeolite and its catalytic behavior in aldol condensation of benzaldehyde and heptanal enhanced by microwave heating. Mater. Chem. Phys. 196, 295–301 (2017)

    Article  CAS  Google Scholar 

  12. M.I. Stankevich, I.V. Stankevich, N.S. Zefirov, Topological indices in organic chemistry. Russ. Chem. Rev. 57(3), 191–208 (1988)

    Article  ADS  Google Scholar 

  13. D.H. Rouvray, The modeling of chemical phenomena using topological indices. J. Comput. Chem. 8(4), 470–480 (1987)

    Article  MathSciNet  CAS  Google Scholar 

  14. S.C. Basak, V.R. Magnuson, G.J. Niemi, R.R. Regal, G.D. Veith, Topological indices: their nature, mutual relatedness, and applications. Math. Modell. 8, 300–305 (1987)

    Article  MathSciNet  Google Scholar 

  15. S. Lal, V.K. Bhat, S. Sharma, Topological descriptors of crystal carbon graphite. Polycycl. Aromat. Compd. (2023) 1–22. https://doi.org/10.1080/10406638.2023.2283197

  16. L.R. Gnanaraj, D. Ganesan, M.K. Siddiqui, Topological indices and QSPR analysis of NSAID drugs. Polycycl. Aromat. Compd. (2023). https://doi.org/10.1080/10406638.2022.2164315

    Article  Google Scholar 

  17. J. Bi, J. Wee, X. Liu, C. Qu, G. Wang, K. Xia, Multiscale topological indices for the quantitative prediction of SARS COV-2 binding affinity change upon mutations. J. Chem. Inf. Model. (2023). https://doi.org/10.1021/acs.jcim.3c00621

    Article  PubMed  Google Scholar 

  18. V. Ravi, M.K. Siddiqui, N. Chidambaram, K. Desikan, On topological descriptors and curvilinear regression analysis of antiviral drugs used in COVID-19 treatment. Polycycl. Aromat. Compd. 42(10), 6932–6945 (2021)

    Article  Google Scholar 

  19. S. Negi, S. Lal, V.K. Bhat, On boron nanotubes and their face index. Mech. Adv. Mater. Struct. 1–9 (2023). https://doi.org/10.1080/15376494.2023.2269649

  20. I. Gutman, B. Furtula, V. Katanić, Randić index and information. AKCE Int. J. Graphs Comb. 15(3), 307–312 (2018)

    Article  MathSciNet  Google Scholar 

  21. X. Ke, S. Wei, J. Huang, The atom-bond connectivity and geometric-arithmetic indices in random polyphenyl chains. Polycycl. Aromat. Compd. 41(9), 1873–1882 (2020)

    Article  Google Scholar 

  22. W. Gao, M.K. Siddiqui, M. Imran, M.K. Jamil, M.R. Farahani, Forgotten topological index of chemical structure in drugs. Saudi Pharm. J. 24(3), 258–264 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs. MATCH Commun. Math. Comput. Chem. 83, 205–220 (2020)

    Google Scholar 

  24. R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs. Appl. Math. Comput. 399, 126018 (2021)

    MathSciNet  Google Scholar 

  25. C. Zhang, R. Sui, S. Kanwal, F.M. Tawfiq, Y. Farooq, A. Aslam, Study of drug structures using topological descriptors and multi-criteria decision making. Int. J. Quantum Chem. 124(1), e27301 (2023)

    Article  Google Scholar 

  26. C.E. Shannon, A mathematical theory of communication. BSTJ 27, 379–423 (1948)

    MathSciNet  Google Scholar 

  27. A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited. Entropy 14(3), 559–570 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  28. S.R.J. Kavitha, J. Abraham, M. Arockiaraj, J. Jency, K. Balasubramanian, Topological characterization and graph entropies of tessellations of kekulene structures: existence of isentropic structures and applications to thermochemistry, NMR and ESR. J. Phys. Chem. A 125(36), 8140–8158 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. W. Wang, A. Fahad, M. Vladimir, N. Mujahid, M. Abisado, Interconnection network analysis through VE-degree-based information functional entropy and complexity. Eur. Phys. J. Plus 138(12), 1109 (2023)

    Article  Google Scholar 

  30. Z. Raza, M. Arockiaraj, A. Maaran, S.R.J. Kavitha, K. Balasubramanian, Topological entropy characterization, NMR and ESR spectral patterns of coronene-based transition metal organic frameworks. ACS Omega 8(14), 13371–13383 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.P. Rahul, J. Clement, Topological characterization and entropy measures of large cavity cycloarene oligomers. Eur. Phys. J. Plus. 137, 1365 (2022)

    Article  CAS  Google Scholar 

  32. M. Arockiaraj, J. Clement, D. Paul, K. Balasubramanian, Quantitative structural descriptors of sodalite materials. J. Mol. Struct. 1223, 128766 (2021)

    Article  CAS  Google Scholar 

  33. M. Arockiaraj, J. Clement, D. Paul, K. Balasubramanian, Relativistic distance-based topological descriptors of Linde type A zeolites and their doped structures with very heavy elements. Mol. Phys. 119(3), 1798529 (2020)

    Article  ADS  Google Scholar 

  34. M. Arockiaraj, D. Paul, S. Klavžar, J. Clement, S. Tigga, K. Balasubramanian, Relativistic distance based and bond additive topological descriptors of zeolite RHO materials. J. Mol. Struct. 1250, 131798 (2022)

    Article  CAS  Google Scholar 

  35. D. Paul, M. Arockiaraj, S. Tigga, K. Balasubramanian, Zeolite AST: relativistic degree and distance based topological descriptors. Comput. Theor. Chem. 1218(3), 113933 (2022)

    Article  CAS  Google Scholar 

  36. K. Jacob, J. Clement, M. Arockiaraj, D. Paul, K. Balasubramanian, Topological characterization and entropy measures of tetragonal Zeolite Merlinoites. J. Mol. Struct. 1277(3), 134786 (2023)

    Article  CAS  Google Scholar 

  37. P. Peter, J. Clement, Potential energy determination of NPT zeolite frameworks by information entropies. J. Mol. Struct. 1292, 136169 (2023)

    Article  CAS  Google Scholar 

  38. M. Arockiaraj, D. Paul, S. Klavžar, J. Clement, S. Tigga, K. Balasubramanian, Relativistic topological and spectral characteristics of zeolite SAS structures. J. Mol. Struct. 1270, 133854 (2022)

    Article  CAS  Google Scholar 

  39. S. Manzoor, M.K. Siddiqui, S. Ahmad, On entropy measures of molecular graphs using topological indices. Arab. J. Chem. 13(8), 6285–6298 (2020)

    Article  CAS  Google Scholar 

  40. J.S. Junias, J. Clement, Predictive analytics of conductance and HOMO-LUMO gaps with topological descriptors of porphyrin nanosheets. Phys. Scr. 99(1), 015208 (2023)

    Article  ADS  Google Scholar 

  41. M.C. Shanmukha, A. Usha, N.S. Basavarajappa, K.C. Shilpa, Graph entropies of porous graphene using topological indices. Comput. Theor. Chem. 1197, 113142 (2021)

    Article  CAS  Google Scholar 

  42. R. Kazemi, Entropy of weighted graphs with the degree-based topological indices as weights. MATCH Commun. Math. Comput. Chem. 76, 69–80 (2016)

    MathSciNet  Google Scholar 

  43. M.M. Emadi Kouchak, F. Safaei, M. Reshadi, Graph entropies-graph energies indices for quantifying network structural irregularity. J. Supercomput. 79(2), 1705–1749 (2022)

    Article  Google Scholar 

  44. S. Sharma, V.K. Bhat, S. Lal, Multiplicative topological indices of the crystal cubic carbon structure. Cryst. Res. Technol. 58(3), 2200222 (2023)

    Article  CAS  Google Scholar 

  45. D. Paul, M. Arockiaraj, K. Jacob, J. Clement, Multiplicative versus scalar multiplicative degree based descriptors in QSAR/QSPR studies and their comparative analysis in entropy measures. Eur. Phys. J. Plus. 138(4), 323 (2023)

    Article  Google Scholar 

  46. M. Arockiaraj, D. Paul, M.U. Ghani, S. Tigga, Y.-M. Chu, Entropy structural characterization of zeolites BCT and DFT with bond-wise scaled comparison. Sci. Rep. 13(1), 10874 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. E. Papa, J.C. Dearden, P. Gramatica, Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere 67(2), 351–358 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  48. M. Rajabi, F. Shafiei, QSAR models for predicting aquatic toxicity of esters using genetic algorithm-multiple linear regression methods. Comb. Chem. High Throughput Screen. 22(5), 317–325 (2019)

    Article  CAS  PubMed  Google Scholar 

  49. W.J. Mortier, R. Vetrivel, Long range versus short range interactions in zeolites, in Guidelines for Mastering the Properties of Molecular Sieves. NATO ASI Series, vol. 221, ed. by D. Barthomeuf, E.G. Derouane, W. Hölderich (Springer, Boston, 1990)

    Google Scholar 

  50. J.A. Michelena, E.F. Vansant, P. de Bièvre, Interaction energy calculations in zeolites. Part I. The electrostatic field in Y and a zeolites. Recl. Trav. Chim. Pays-Bas. 97(6), 162–166 (1978)

    Article  CAS  Google Scholar 

  51. D.C. Palmer, Visualization and analysis of crystal structures using CrystalMaker software. Z. Kristallogr. Cryst. Mater. 230(9–10), 559–572 (2015)

    Article  CAS  ADS  Google Scholar 

  52. M. Arockiaraj, J.B. Liu, D. Paul, J. Clement, X. Zhao, S. Tigga, Degree descriptors and graph entropy quantities of zeolite ACO. Curr. Org. Synth. 21 (2023). https://doi.org/10.2174/1570179421666230825151331

  53. K. Jacob, J. Clement, Zeolite ATN: topological characterization and predictive analysis on potential energies using entropy measures. J. Mol. Struct. 1299, 137101 (2024)

    Article  CAS  Google Scholar 

  54. Origin, Version 2022. OriginLab Corporation, Northampton, MA, USA

  55. D.A. Ratkowsky, Handbook of Nonlinear Regression Models (Marcel Dekker, New York, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Clement.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, K., Clement, J. Topological entropy characterization of zeolite EDI and its application in predicting molecular interactions. Eur. Phys. J. Plus 139, 161 (2024). https://doi.org/10.1140/epjp/s13360-024-04939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04939-0

Navigation