Skip to main content
Log in

An improved Hénon map based on G-L fractional-order discrete memristor and its FPGA implementation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In recent years, the application of memristors in the field of chaos has become a research hotspot. Researchers have employed integer-order discrete memristors into Hénon maps, and analyzed its characteristics. In this paper, a fractional-order discrete memristor (FDM) based on Grunwald-Letnikov definition is introduced, and it is proved that it meets the definition of generalized memristor. The FDM is applied to Hénon map and an improved Hénon map is designed. Its dynamics is analyzed by attractors, bifurcation diagrams, maximum Lyapunov exponent spectrum and permutation entropy complexity. The results show that the improved map has a wider chaos range than the original Hénon map and integer-order discrete memristive Hénon map, and the order affects the state of the system and is one of the bifurcation parameters. Finally, we implement the improved Hénon map on FPGA platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Chua, IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. T. Prodromakis, C. Toumazou, L. Chua, Nat. Mater. 11(6), 478–481 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. G. Papandroulidakis, I. Vourkas, A. Abusleme et al., IEEE Trans. Nanotechnol. 16(3), 491–501 (2017)

    Article  ADS  CAS  Google Scholar 

  4. H. Kim, M. Sah, C. Yang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012)

    Article  MathSciNet  Google Scholar 

  5. L. Liu, W. Xiong, Y. Liu et al., Adv. Electron. Mater. 6(2), 1901012 (2020)

    Article  CAS  Google Scholar 

  6. M. Wang, M. An, S. He et al., Chaos 33(7), 073129 (2023)

    Article  ADS  PubMed  Google Scholar 

  7. X. Zhu, Q. Wang, W. Lu, Nat. Commun. 11(1), 2439 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Zhong, J. Tang, X. Li et al., Nat. Commun. 12(1), 408 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. Kim, K. Eshraghian, H. Kang et al., J. Nanosci. Nanotechnol. 21(3), 1833–1844 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. D. Strukov, G. Snider, D. Stewart et al., Nature 453(7191), 80–83 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. T. Dongale, K. Khot, S. Mali et al., Mater. Sci. Semicond. Process. 40, 523–526 (2015)

    Article  CAS  Google Scholar 

  12. P. Bousoulas, D. Sakellaropoulos, C. Papakonstantinopoulos et al., Nanotechnology 31(45), 454002 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. P. Saha, R. Palit, P. Ghosal, Devices Integr. Circuit (DevIC) IEEE 2021, 368–372 (2021)

    Google Scholar 

  14. X. Wang, P. Zhou, C. Jin et al., in IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2020), pp. 1–5

  15. J. Wang, H. Li, Z. Wang et al., IEEE Access 9, 70300–70312 (2021)

    Article  Google Scholar 

  16. Y. Xian, C. Xia, T. Guo et al., Results Phys. 11, 368–376 (2018)

    Article  ADS  Google Scholar 

  17. W. Sharif, M. Idros, S. Al-Junid et al., Int. J. Electr. Comput. Eng. 11(3), 2003–2010 (2021)

    Google Scholar 

  18. M. Ma, Y. Yang, Z. Qiu et al., Nonlinear Dyn. 107(3), 2935–2949 (2022)

    Article  Google Scholar 

  19. M. Itoh, L. Chua, Int. J. Bifurc. Chaos 24(05), 1430015 (2014)

    Article  Google Scholar 

  20. S. He, K. Sun, Y. Peng et al., AIP Adv. 10(1), 015332 (2020)

    Article  ADS  Google Scholar 

  21. Z. Liang, S. He, H. Wang et al., Eur. Phys. J. Plus 137(3), 309 (2022)

    Article  Google Scholar 

  22. B. Bao, K. Rong, H. Li et al., IEEE Trans. Circuits Syst. II Express Briefs 68(8), 2992–2996 (2021)

    Google Scholar 

  23. Q. Lai, C. Lai, IEEE Trans. Circuits Syst. II Express Briefs 69(4), 2331–2335 (2022)

    Google Scholar 

  24. H. Li, Z. Hua, H. Bao et al., IEEE Trans. Industr. Electron. 68(10), 9931–9940 (2020)

    Article  Google Scholar 

  25. S. Kong, C. Li, S. He et al., Chin. Phys. B 30(11), 110502 (2021)

    Article  ADS  Google Scholar 

  26. L. Fu, X. Wu, S. He et al., IEEE Trans. Ind. Electron. (2023). https://doi.org/10.1109/TIE.2023.3262883

    Article  Google Scholar 

  27. L. Laskaridis, C. Volos, J. Munoz-Pacheco et al., Integration 89, 168–177 (2023)

    Article  Google Scholar 

  28. D. Cafagna, IEEE Ind. Electron. Mag. 1(2), 35–40 (2007)

    Article  Google Scholar 

  29. J. Sabatier, O. Agrawal, J. Machado, in Advances in fractional calculus: theoretical developments and applications in physics and engineering (Springer, Dordrecht, 2007), pp. 1–155

  30. R. Hilfer, in Applications of fractional calculus in physics (World Scientific, Singapore, 2000), pp. 87–202

  31. Q. Yang, D. Chen, T. Zhao et al., Fract. Calc. Appl. Anal. 19(5), 1222–1249 (2016)

    Article  MathSciNet  Google Scholar 

  32. S. Momani, Z. Odibat, J. Comput. Appl. Math. 207(1), 96–110 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Delavari, D. Baleanu, J. Sadati, Nonlinear Dyn. 67, 2433–2439 (2012)

    Article  Google Scholar 

  34. A. Azar, A. Radwan, S. Vaidyanathan, in Fractional order systems: optimization, control, circuit realizations and applications (Academic Press, Oxford, 2018), pp. 33–62

  35. X. Zhou, C. Zhao, Y. Huang, Mathematics 11(2), 316 (2023)

    Article  Google Scholar 

  36. S. Ismail, L. Said, A. Radwan et al., Signal Process. 167, 107280 (2020)

    Article  Google Scholar 

  37. Y. Pu, X. Yuan, IEEE Access 4, 1872–1888 (2016)

    Article  Google Scholar 

  38. M. Fouda, A. Radwan, Circuits Syst. Signal Process. 34, 961–970 (2015)

    Article  Google Scholar 

  39. I. Petráš, IEEE Trans. Circuits Syst. II 57(12), 975–979 (2010)

    Google Scholar 

  40. C. Qin, K. Sun, S. He, Electronics 10(7), 841 (2021)

    Article  Google Scholar 

  41. Y. Peng, S. He, K. Sun, Results Phys. 24, 104106 (2021)

    Article  Google Scholar 

  42. Y. Lu, C. Wang, Q. Deng et al., Chin. Phys. B 31(6), 060502 (2022)

    Article  ADS  Google Scholar 

  43. Y. Peng, J. Liu, S. He et al., Chaos Solitons Fractals 171, 113429 (2023)

    Article  Google Scholar 

  44. M. Hénon, Q. Appl. Math. 27, 291–312 (1969)

    Article  Google Scholar 

  45. K. Rong, H. Bao, H. Li et al., Nonlinear Dyn. 108(4), 4459–4470 (2022)

    Article  Google Scholar 

  46. M. Abualhomos, A. Abbes, G. Gharib et al., Mathematics 11(19), 4166 (2023)

    Article  Google Scholar 

  47. M. Holm, Cubo (Temuco) 13(3), 153–184 (2011)

    Article  Google Scholar 

  48. I. Petráš, in Fractional-order nonlinear systems: modeling, analysis and simulation (Higher Education Press, Beijing, 2011), pp. 7–54

  49. L. Huang, L. Wang, D. Shi, IEEE/CAA J. Autom. Sin. (2016). https://doi.org/10.1109/JAS.2016.7510148

    Article  Google Scholar 

  50. S. He, D. Zhan, H. Wang et al., Entropy 24(6), 786 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Y. Peng, K. Sun, S. He, Chaos Solitons Fractals 137, 109873 (2020)

    Article  MathSciNet  Google Scholar 

  52. L. Chua, G. Sirakoulis, A. Adamatzky, in Handbook of Memristor Networks (Springer, Cham, 2019), pp. 165–196

  53. Tavazoei, S. Mohammad, Automatica 46(5), 945–948 (2010)

  54. X. Wu, L. Fu, S. He et al., Results Phys. 52, 106866 (2023)

    Article  Google Scholar 

  55. Z. Yao, K. Sun, S. He, Int. J. Bifurc. Chaos 32(13), 2250195 (2022)

    Article  ADS  Google Scholar 

  56. E. Kaslik, S. Sivasundaram, Nonlinear Anal. Real World Appl. 13(3), 1489–1497 (2012)

    Article  MathSciNet  Google Scholar 

  57. A. Wolf, J. Swift, H. Swinney et al., Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  58. S. He, K. Sun, H. Wang, Entropy 17(12), 8299–8311 (2015)

    Article  ADS  Google Scholar 

  59. C. Bandt, B. Pompe, Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62061008, 62071496, 61901530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, G., Sun, K. et al. An improved Hénon map based on G-L fractional-order discrete memristor and its FPGA implementation. Eur. Phys. J. Plus 139, 154 (2024). https://doi.org/10.1140/epjp/s13360-024-04924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04924-7

Navigation