Skip to main content
Log in

Use of air curtains for creating safe areas in bodybuilding salons for controlling the spread of SARS-CoV-2-carrying respiratory droplets

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the spreading of cough droplets emitted by an infected person in a bodybuilding salon in the presence of an air curtain system was investigated using computational fluid dynamics (CFD) simulations. The RNG k-ε model was used to simulate turbulent airflows in the bodybuilding salon. The Eulerian–Lagrangian model was used for cough droplet dispersion simulation. This study introduced various innovative elements that contributed to advancing the field. First, it presented a groundbreaking air curtain flow pattern designed for bodybuilding salons. Second, the study employed user-defined functions (UDFs) to model airflow containing cough droplets and their evaporation, providing a comprehensive understanding of droplet behavior. Third, the risk of infection was evaluated using the Wells–Riley equation and then the effect of relative humidity on droplet evaporation in bodybuilding salons. Air curtain flow pattern, requiring no structural changes to the building while optimizing energy consumption, preventing the spread of viruses and dust, and ensuring fresh air circulation throughout the salon, can be implemented in various public and private spaces. The air curtains were generated using two narrow inlets at the ceiling with floor-level outlets to separate the indoor environments into compartments with limited mass transfers but unlimited access through the opening between these spaces. The simulation results showed that when the air curtain ventilation system was used, 60s after the cough, the average cough droplet concentrations in some areas are at nearly 5%. There were no droplets in the bodybuilding salon after the 90s and the virus-carrying droplets stayed in the space between the air curtains and did not spread in the salon. The study evaluates the risk using the Wells–Riley equation of infection for individuals in the bodybuilding salon, providing valuable insights into the potential vulnerabilities and the need for precautions in this setting. The infection risk of a healthy person in areas A1, A4, and A7 is 21%, 33%, and 25%, respectively, but in areas A2, A3, and A5–A9, the infection risk is less than 1%. The reason is that the airflow pattern created by the air curtain reduces or prevents the spread of virus-carrying droplets to the other compartment generated by the air curtains and also makes the environment safer. These findings significantly enhanced safety measures and controlled droplet spread in these indoor spaces.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No new experimental data are provided in this manuscript.

Abbreviations

A :

Surface area (m2)

A C :

Average droplet concentration (Kg/m3)

A i :

I-The area (i = 1,2,..,8)

A N :

Number of particles

V A :

Velocity average in domain solving flow (m/s)

v(x, t):

Droplet concentration

C C :

Cunningham coefficient (-)

C i,s :

Vapor concentration at the particle surface (kg mol/m3)

C i,∞ :

Vapor concentration in the bulk gas (kg mol/m3)

C p :

Specific heat capacity (J/kg K)

cp:

Quanta number density in droplets (-)

d :

Droplets diameter (μm)

D i,m :

Diffusion coefficient of vapor (m2/s)

F B :

Brownian force (-)

F D :

Drag factor (-)

FTH :

Thermophoretic force (-)

F L :

Saffman lift force (-)

f(t):

Viability of the virus

p:

Flow rate (kg/s)

G :

Gravity (m/s2)

g :

Gravitational acceleration components (m/s2)

h :

Convective heat transfer coefficient (W/m2-K)

h fg :

Latent heat (J/kg)

I :

Number of infectors (-)

I I :

Injection time (s)

K T :

Fluid thermal conductivity (W/m K)

k C :

Mass transfer coefficient (m/s)

M w,i :

The molecular weight of species i (kg/kg mol)

m :

Mass (kg)

N :

Number of droplets (-)

Nu:

Nusselt number (hl/ka)

N i :

Molar flux of vapor (kg mol/m2-s)

N T :

Total number of droplets (-)

N t :

Droplets at each time (-)

\(N\) Tn :

Droplets remaining in the dental clinic (-)

\({N}_{{\text{m}}}\) :

Number of meshes (-)

Ns:

Total number of quanta (-)

P :

Pressure (Pa)

PRT:

Particle residence time (s)

P op :

Operating pressure (pa)

ρ :

Breathing rate per person (m3/s)

\({\rho }_{{\text{d}}}\) :

Density of droplets

Q :

Air supply rate (m3/s)

q :

Quantum generation rate (quanta/s)

R :

Universal gas constant (J/kg.K)

Re:

Reynolds number (-)

RH:

Relative humidity (-)

P rt :

Particle removal time (s)

m :

Mass (kg)

S :

Number of susceptible (-)

Sc:

Schmidt number (-)

S T :

Source term (C)

t :

Time (s)

T :

Temperature conditions (C)

u, v, w :

Velocity components (m/s)

G k, S ε, S k, α k, α ε, R ε, \({C}_{1\varepsilon }\) , \({C}_{2\varepsilon }\) :

Turbulent kinetic energy and model constants (-)

V v :

Ventilation velocity (m/s)

V :

Velocity vector (m/s)

W :

Water mass fraction (Kg/mol)

X, Y :

Non-dimensional Cartesian coordinates (-)

α :

Thermal diffusivity (m2/s)

ε :

Dissipation rate of the turbulent energy (-)

μ T :

Dynamic viscosity (m2/s)

η :

Particle removal efficiency (-)

ρ :

Density (kg/m3)

sat:

Saturation (-)

T:

Total (-)

x,y,z :

Cartesian directions (-)

References

  1. World Health Organization. (2021). Infection prevention and control during health care when coronavirus disease (COVID-19) is suspected or confirmed: interim guidance, 12 July 2021 (No. WHO/2019-nCoV/IPC/2021.1). World Health Organization.

  2. R. Zhang, Y. Li, A.L. Zhang, Y. Wang, M.J. Molina, Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. 117(26), 14857–14863 (2020)

    Article  ADS  Google Scholar 

  3. L. Morawska, J. Cao, Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139, 105730 (2020)

    Article  Google Scholar 

  4. X. Li, Y. Shang, Y. Yan, L. Yang, J. Tu, Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Build. Environ. 128, 68–76 (2018)

    Article  Google Scholar 

  5. H.C. Yu, K.W. Mui, L.T. Wong, H.S. Chu, Ventilation of general hospital wards for mitigating infection risks of three kinds of viruses including Middle East respiratory syndrome coronavirus. Indoor Built Environ. 26(4), 514–527 (2017)

    Article  Google Scholar 

  6. L. Zhang, Y. Li, Dispersion of coughed droplets in a fully-occupied high-speed rail cabin. Build. Environ. 47, 58–66 (2012)

    Article  Google Scholar 

  7. N. Baker, G. Kelly, P.D. O’Sullivan, A grid convergence index study of mesh style effect on the accuracy of the numerical results for an indoor airflow profile. Int. J. Vent. 19(4), 300–314 (2020)

    Google Scholar 

  8. J. Redrow, S. Mao, I. Celik, J.A. Posada, Z.G. Feng, Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Build. Environ. 46(10), 2042–2051 (2011)

    Article  Google Scholar 

  9. Y. Yan, X. Li, J. Tu, Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space. Build. Environ. 148, 96–106 (2019)

    Article  Google Scholar 

  10. A. A. Aliabadi, S. N. Rogak, S. I. Green, K. H. Bartlett, (2010). CFD simulation of human coughs and sneezes: a study in droplet dispersion, heat, and mass transfer. in: ASME International Mechanical Engineering Congress and Exposition (Vol. 44441, pp. 1051–1060)

  11. J. Ren, Y. Wang, Q. Liu, Y. Liu, Numerical study of three ventilation strategies in a prefabricated COVID-19 inpatient ward. Build. Environ. 188, 107467 (2021)

    Article  Google Scholar 

  12. C.Y.H. Chao, M.P. Wan, L. Morawska, G.R. Johnson, Z.D. Ristovski, M. Hargreaves, S. Corbett, Y. Li, X. Xie, D. Katoshevski, Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40(2), 122–133 (2009)

    Article  ADS  Google Scholar 

  13. W. Che, J. Ding, L. Li, Airflow deflectors of external windowsto induce ventilation: towards COVID-19 prevention and control. Sustain. Cities Soc. 77, 103548 (2022)

    Article  Google Scholar 

  14. M. Shirzadi, Y. Tominaga, P.A. Mirzaei, Experimental and steady-RANS CFD modelling of cross-ventilation in moderately-dense urban areas. Sustain. Cities Soc. 52, 101849 (2020)

    Article  Google Scholar 

  15. N.P. Gao, J.L. Niu, Modeling particle dispersion and deposition in indoor environments. Atmos. Environ. 41(18), 3862–3876 (2007)

    Article  ADS  Google Scholar 

  16. K. Sirén, Technical dimensioning of a vertically upwards blowing air curtain—part I. Energy Build. 35(7), 681–695 (2003)

    Article  Google Scholar 

  17. S. Yang, H. Alrawashdeh, C. Zhang, D. Qi, L.L. Wang, T. Stathopoulos, Wind effects on air curtain performance at building entrances. Build. Environ. 151, 75–87 (2019)

    Article  Google Scholar 

  18. A. Khayrullina, B. Blocken, M.O.M. de Almeida, T. van Hooff, G. van Heijst, Impact of a wall downstream of an air curtain nozzle on air curtain separation efficiency. Build. Environ. 197, 107873 (2021)

    Article  Google Scholar 

  19. N.K. Jha, D. Frank, P.F. Linden, Contaminant transport by human passage through an air curtain separating two sections of a corridor: Part I-Uniform ambient temperature. Energy Build. 236, 110818 (2021)

    Article  Google Scholar 

  20. S.S. Diwan, S. Ravichandran, R. Govindarajan, R. Narasimha, Understanding transmission dynamics of COVID-19-type infections by direct numerical simulations of cough/sneeze flows. Trans. Indian Nat. Acad. Eng. 5, 255–261 (2020)

    Article  Google Scholar 

  21. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)

    Article  Google Scholar 

  22. J. Wang, L. Sun, M. Zou, W. Gao, C. Liu, L. Shang, Y. Zhao, Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3(6), e1700004 (2017)

    Article  ADS  Google Scholar 

  23. Y.Y. Li, J.X. Wang, X. Chen, Can a toilet promote virus transmission? From a fluid dynamics perspective. Phys. Fluids 32(6), 065107 (2020)

    Article  ADS  Google Scholar 

  24. A. Li, G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16(4), 209–226 (1992)

    Article  ADS  Google Scholar 

  25. Y.P. Chen, Z.L. Deng, Hydrodynamics of a droplet passing through a microfluidic T-junction. J. Fluid Mech. 819, 401–434 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Zhang, S. Wu, F. Yao, Evaporation regimes in an enclosed narrow space. Int. J. Heat Mass Transf. 138, 1042–1053 (2019)

    Article  Google Scholar 

  27. M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001)

    Article  ADS  Google Scholar 

  28. B. E. Poling, J. M. Prausnitz, J. P. O’connell, (2001). Properties of gases and liquids. McGraw-Hill Education

  29. L. Landy, Reviewing the musicology of electroacoustic music: a plea for greater triangulation. Organised Sound 4(1), 61–70 (1999)

    Article  Google Scholar 

  30. A. Jose, M.S. Thibodeaux, Institutionalization of ethics: the perspective of managers. J. Bus. Ethics 22(2), 133–143 (1999)

    Article  Google Scholar 

  31. H.T. Dao, K.S. Kim, Behavior of cough droplets emitted from Covid-19 patient in hospital isolation room with different ventilation configurations. Build. Environ. 209, 108649 (2022)

    Article  Google Scholar 

  32. S. Balachandar, S. Zaleski, A. Soldati, G. Ahmadi, L. Bourouiba, Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Int. J. Multiph. Flow 132, 103439 (2020)

    Article  MathSciNet  Google Scholar 

  33. W. F. Wells, (1955). Airborne contagion and air hygiene. an ecological study of droplet infections. airborne contagion and air hygiene. an ecological study of droplet infections.

  34. E.C. Riley, G. Murphy, R.L. Riley, Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 107(5), 421–432 (1978)

    Article  Google Scholar 

  35. Y. Yang, Y. Wang, L. Tian, C. Su, Z. Chen, Y. Huang, Effects of purifiers on the airborne transmission of droplets inside a bus. Phys. Fluids 34(1), 017108 (2022)

    Article  ADS  Google Scholar 

  36. S.L. Miller, W.W. Nazaroff, J.L. Jimenez, A. Boerstra, G. Buonanno, S.J. Dancer, J. Kurnitski, L.C. Marr, L. Morawska, C. Noakes, Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale super spreading event. Indoor Air 31(2), 314–323 (2021)

    Article  Google Scholar 

  37. V. Deprédurand, G. Castanet, F. Lemoine, Heat and mass transfer in evaporating droplets in interaction: influence of the fuel. Int. J. Heat Mass Transf. 53(17–18), 3495–3502 (2010)

    Article  Google Scholar 

  38. R.M. Effros, K.W. Hoagland, M. Bosbous, D. Castillo, B. Foss, M. Dunning, M. Gare, W. Lin, F. Sun, Dilution of respiratory solutes in exhaled condensates. Am. J. Resp. Critical Care Med. 165(5), 663–669 (2002)

    Article  Google Scholar 

  39. Y.M. Bar-On, A. Flamholz, R. Phillips, R. Milo, Science Forum: SARS-CoV-2 (COVID-19) by the numbers. Elife 9, e57309 (2020)

    Article  Google Scholar 

  40. J.K. Gupta, C.H. Lin, Q. Chen, Flow dynamics and characterization of a cough. Indoor Air 19(6), 517–525 (2009)

    Article  Google Scholar 

  41. W. Lu, A.T. Howarth, N. Adam, S.B. Riffat, Modelling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber. Build. Environ. 31, 417–423 (1996)

    Article  Google Scholar 

  42. I. B. Celik, U. Ghia, P.J. Roache, C.J. Freitas. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME. 130(7)

Download references

Acknowledgements

This research was supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (grant number). (NRF-2022H1D3A2A02090885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, S., Lakzian, E. & Ahmadi, G. Use of air curtains for creating safe areas in bodybuilding salons for controlling the spread of SARS-CoV-2-carrying respiratory droplets. Eur. Phys. J. Plus 139, 87 (2024). https://doi.org/10.1140/epjp/s13360-024-04899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04899-5

Navigation