Skip to main content
Log in

Two-loop renormalization of the CPT-even Lorentz-violating scalar QED

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Investigating quantum effects arising from high loops in perturbation theory is crucial for the physical applications of any quantum field theory. This paper presents a comprehensive analysis of the two-loop renormalization of CPT-even Lorentz-violating scalar electrodynamics at the first order in the background vectors. We provide results for the self-energies of the photon and scalar field, as well as for the three-point function associated with the scalar–scalar–photon vertex, ensuring a thorough examination of the quantum effects. The asymptotic behavior of the model is investigated through the calculation of the beta functions, and the Ward identities are fulfilled, demonstrating the consistency of the result. Computational tools were employed to carry out the calculations, and we provide additional details in the Supplemental Material for interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model (Cambridge Univ, Press, 2014)

  2. P. Langacker, The Standard Model and Beyond (Taylor & Francis, 2017)

  3. A. Freitas, Precision tests of the standard model, Theoretical Advanced Study Institute 2020The Obscure Universe: Neutrinos and Other Dark Matters-TASI2020; 1-26 June (2021): 5 [arXiv:2012.11642 [hep-ph]]

  4. T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C.M. Carloni Calame, M. Cè , G. Colangelo, et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 887, 1–166 (2020). [arXiv:2006.04822 [hep-ph]]

  5. T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109, 111807 (2012). [arXiv:1205.5368 [hep-ph]]

    Article  ADS  Google Scholar 

  6. A. Czarnecki, B. Krause , W.J. Marciano, Electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. Lett. 76, 3267–3270 (1996). [arXiv:hep-ph/9512369 [hep-ph]]

  7. A. Czarnecki, W.J. Marciano , A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67, 073006 (2003). [erratum: Phys. Rev. D 73 (2006), 119901]

  8. A. Ferrero, B. Altschul, Phys. Rev. D 84, 065030 (2011). [arXiv:1104.4778 [hep-th]]

    Article  ADS  Google Scholar 

  9. P.R.S. Carvalho, Phys. Lett. B 726, 850–855 (2013). [arXiv:1403.1826 [hep-th]]

    Article  ADS  Google Scholar 

  10. P.R.S. Carvalho, M.I. Sena-Junior, Eur. Phys. J. C 77, 753 (2017). [arXiv:1804.06503 [hep-th]]

    Article  ADS  Google Scholar 

  11. D. Colladay , V.A. Kostelecky, CPT violation and the standard model, Phys. Rev. D 55, 6760–6774 (1997). [arXiv:hep-ph/9703464 [hep-ph]]

  12. D. Colladay, V.A. Kostelecky, Lorentz violating extension of the standard model. Phys. Rev. D 58, 116002 (1998). [arXiv:hep-ph/9809521 [hep-ph]]

    Article  ADS  Google Scholar 

  13. V.A. Kostelecky, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002). [arXiv:hep-ph/0205211 [hep-ph]]

    Article  ADS  Google Scholar 

  14. V.A. Kostelecky, M. Mewes, Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 80, 015020 (2009). [arXiv:0905.0031 [hep-ph]]

    Article  ADS  Google Scholar 

  15. A.F. Ferrari, J.R. Nascimento , A.Y. Petrov, Radiative corrections and Lorentz violation, Eur. Phys. J. C 80(5), 459 (2020). [arXiv:1812.01702 [hep-th]]

  16. G. de Berredo-Peixoto , I.L. Shapiro, Phys. Lett. B 642, 153–159 (2006). [arXiv:hep-th/0607109 [hep-th]]

  17. T. de Paula Netto , I.L. Shapiro, Phys. Rev. D 89(10), 104037 (2014). [arXiv:1403.3152 [hep-th]]

  18. T. de Paula Netto, Phys. Rev. D 97(5), 055048 (2018). [arXiv:1711.05193 [hep-th]]

  19. B. Altschul, Lorentz and CPT Violation in Scalar-Mediated Potentials, Phys. Rev. D 87(4), 045012 (2013). [arXiv:1211.6614 [hep-th]]

  20. L.C.T. Brito, H.G. Fargnoli , A.P. Baêta Scarpelli, Aspects of quantum corrections in a Lorentz-violating extension of the Abelian Higgs model. Phys. Rev. D 87(12), 125023 (2013). [arXiv:1304.6016 [hep-th]]

  21. A.P. Baêta Scarpelli, J.C.C. Felipe, L.C.T. Brito , A. Yu. Petrov, One-loop calculations in CPT-even Lorentz-breaking scalar QED. Mod. Phys. Lett. A 37(16), 2250100 (2022). [arXiv:2111.14257 [hep-th]]

  22. B. Altschul, L.C.T. Brito, J.C.C. Felipe, S. Karki, A.C. Lehum , A.Y. Petrov, Three- and four-point functions in CPT-even Lorentz-violating scalar QED. Phys. Rev. D 107(4), 045005 (2023). [arXiv:2211.11399 [hep-th]]

  23. B. Altschul, L.C.T. Brito, J.C.C. Felipe, S. Karki, A.C. Lehum , A.Y. Petrov, Perturbative aspects of CPT-even Lorentz-violating scalar chromodynamics. Phys. Rev. D 107(11), 115002 (2023). [arXiv:2304.03025 [hep-th]]

  24. L.C.T. Brito, J.C.C. Felipe, A.Y. Petrov , A.P. Baêta Scarpelli, No radiative corrections to the Carroll–Field–Jackiw term beyond one-loop order. Int. J. Mod. Phys. A 36(05), 2150033 (2021). [arXiv:2005.04637 [hep-th]]

  25. T. Mariz, R.V. Maluf, J.R. Nascimento , A.Y. Petrov, Int. J. Mod. Phys. A 33(02), 1850018 (2018). [arXiv:1604.06647 [hep-th]]

  26. R. Mertig, M. Bohm, A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes. Comput. Phys. Commun. 64, 345–359 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Shtabovenko, R. Mertig , F. Orellana, New developments in FeynCalc 9.0. Comput. Phys. Commun. 207, 432–444 (2016). [arXiv:1601.01167 [hep-ph]]

  28. V. Shtabovenko, R. Mertig, F. Orellana, FeynCalc 9.3: new features and improvements. Comput. Phys. Commun. 256, 107478 (2020). [arXiv:2001.04407 [hep-ph]]

  29. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3. Comput. Phys. Commun. 140, 418–431 (2001). [arXiv:hep-ph/0012260 [hep-ph]]

  30. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules 2.0–a complete toolbox for tree-level phenomenology. Comput. Phys. Commun. 185, 2250 (2014)

    Article  ADS  Google Scholar 

  31. V. Shtabovenko, FeynHelpers: connecting FeynCalc to FIRE and Package-X. Comput. Phys. Commun. 218, 48–65 (2017). [arXiv:1611.06793 [physics.comp-ph]]

  32. O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses. Nucl. Phys. B 502, 455–482 (1997). [arXiv:hep-ph/9703319 [hep-ph]]

  33. R. Mertig , R. Scharf, TARCER: A Mathematica program for the reduction of two loop propagator integrals. Comput. Phys. Commun. 111, 265–273 (1998). [arXiv:hep-ph/9801383 [hep-ph]]

  34. S.P. Martin , D.G. Robertson, TSIL: a program for the calculation of two-loop self-energy integrals. Comput. Phys. Commun. 174, 133–151 (2006). [arXiv:hep-ph/0501132 [hep-ph]]

  35. D.I. Kazakov, O.V. Tarasov, A.A. Vladimirov, Sov. Phys. JETP 50, 521 (1979) JINR-E2-12249

  36. J.C. Collins, Cambridge University Press, 1986, ISBN 978-0-521-31177-9, 978-0-511-86739-2, 978-1-00-940180-7

  37. J. Brod, Z. Polonsky, JHEP 09, 158 (2020). [arXiv:2007.13755 [hep-ph]]

    Article  ADS  Google Scholar 

  38. V.A. Kostelecky, C.D. Lane, A.G.M. Pickering, One loop renormalization of Lorentz violating electrodynamics. Phys. Rev. D 65, 056006 (2002). [arXiv:hep-th/0111123 [hep-th]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Gomes and J. R. Nascimento for important discussions. The work of A. Yu. P. has been partially supported by the CNPq project No. 301562/2019-9. The work of A. C. L. has been partially supported by the CNPq project No. 404310/2023-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Petrov.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2397 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, L.C.T., Felipe, J.C.C., Lehum, A.C. et al. Two-loop renormalization of the CPT-even Lorentz-violating scalar QED. Eur. Phys. J. Plus 139, 90 (2024). https://doi.org/10.1140/epjp/s13360-024-04891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04891-z

Navigation