Skip to main content
Log in

Feasibility study on conservation of water-saturated archaeological wood in earthen sites by hot air with different humidity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The biggest challenge for the long-term conservation of water-saturated archaeological wood in earthen sites is microbial reproduction. This study examines the impact of hot air with varying humidity in conserving water-saturated archaeological wood in earthen sites. The experimental work prioritizes disinfection efficiency and the safety of cultural relics. Different representation methods have been employed, including testing of disinfection rate, shrinkage rate, and moisture content, as well as the utilization of techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption. By employing these approaches, we investigated the appropriate humidity range and feasibility of using hot air disinfection as an approach for protecting water-saturated archaeological wood in earthen sites. This study provides valuable insights and references for the conservation of water-saturated archaeological wood in earthen sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The author declares that the data supporting the findings of this study are available within the paper].

References

  1. M. Broda, C.A.S. Hill, Forests 12, 1193 (2021)

    Article  Google Scholar 

  2. R.A. Blanchette, Int. Biodeterior. Biodegrad. 46, 189 (2000)

    Article  Google Scholar 

  3. Z. Walsh-Korb, L. Avérous, Prog. Mater. Sci. 102, 167 (2019)

    Article  Google Scholar 

  4. S. Romeo, O. Zeni, IEEE J. Electromagn. RF Microw. Med. Biol. 7, 110 (2022)

    Article  Google Scholar 

  5. O.-A. Cuzman, R. Olmi, C. Riminesi, P. Tiano, Int. J. Conserv. Sci. 4, 133 (2013)

    Google Scholar 

  6. C. Riminesi, R. Olm, Int. J. Conserv. Sci. 7, 281 (2016)

    Google Scholar 

  7. F. Cappitelli, C. Cattò, F. Villa, Microorganisms 8, 1542 (2020)

    Article  Google Scholar 

  8. J. Bech-Andersen, J. Build. Apprais. 2, 3 (2006)

    Article  Google Scholar 

  9. A. Unger, A.P. Schniewind, W. Unger, Conservation of Wood Artifacts: A Handbook (Springer, Berlin, 2001)

    Book  Google Scholar 

  10. N. Krzyzanowski, K. Oduyemi, N. Jack, N.M. Ross, J.W. Palfreyman, J. Environ. Manage. 57, 143 (1999)

    Article  Google Scholar 

  11. G.G. Beiner, T.M.A. Ogilvie, The Conservator 29, 5 (2005)

    Article  Google Scholar 

  12. B. Wang, M. Qi, Y. Ma, B. Zhang, Y. Hu, Microb. Ecol. 86, 2109 (2023)

    Article  ADS  Google Scholar 

  13. X. Zhou, X. Liu, J. Zhejiang Univ. Water Resour. Electr. Power 34, 1 (2022)

    Google Scholar 

  14. S.C. Parija, Textbook of Microbiology and Immunology (Springer Nature, Singapore, 2023)

    Book  Google Scholar 

  15. R. Li, J. Guo, N. Macchioni, B. Pizzo, G. Xi, X. Tian, J. Chen, J. Sun, X. Jiang, J. Cao, Z. Zhang, Y. Yin, J. Cult. Herit. 56, 25 (2022)

    Article  Google Scholar 

  16. L. Han, X. Han, G. Liang, X. Tian, F. Ma, S. Sun, Y. Yin, G. Xi, H. Guo, Forests 14, 15 (2022)

    Article  Google Scholar 

  17. M. Broda, C.-M. Popescu, D.I. Timpu, D. Rowiński, E. Roszyk, Materials 14, 7632 (2021)

    Article  ADS  Google Scholar 

  18. Y. Yin, L. Berglund, L. Salmén, Biomacromolecules 12, 194 (2011)

    Article  Google Scholar 

  19. L. Han, X. Tian, T. Keplinger, H. Zhou, R. Li, K. Svedström, I. Burgert, Y. Yin, J. Guo, Molecules 25, 1113 (2020)

    Article  Google Scholar 

  20. K. Long, K. Chen, L. Lin, F. Fu, Y. Zhong, Forests 14, 393 (2023)

    Article  Google Scholar 

  21. L. Han, G. Xi, W. Dai, Q. Zhou, S. Sun, X. Han, H. Guo, Molecules 28, 1946 (2023)

    Article  Google Scholar 

  22. K.K. Pandey, A.J. Pitman, Int. Biodeterior. Biodegrad. 52, 151 (2003)

    Article  Google Scholar 

  23. K.K. Pandey, A.J. Pitman, J. Polym. Sci. A Polym. Chem. 42, 2340 (2004)

    Article  ADS  Google Scholar 

  24. J. Guo, J. Chen, Q. Meng, L. Ploszczanski, J. Liu, R. Luo, T. Jin, P. Siedlaczek, H.C. Lichtenegger, Y. Yin, H. Rennhofer, Cellulose 29, 9549 (2022)

    Article  Google Scholar 

  25. J.J. Lucejko, D. Tamburini, M. Zborowska, L. Babiński, F. Modugno, M.P. Colombini, Herit. Sci. 8, 44 (2020)

    Article  Google Scholar 

  26. J. Guo, J. Chen, R. Li, J. Liu, R. Luo, L. Jiao, Y. Yin, Thermochim. Acta 715, 179297 (2022)

    Article  Google Scholar 

  27. H. Yang, R. Yan, H. Chen, C. Zheng, D.H. Lee, D.T. Liang, Energy Fuels 20, 388 (2006)

    Article  Google Scholar 

  28. L. Gašparoviè, J. Labovský, J. Markoš, Chem. Biochem. Eng. Q. 26, 45 (2012)

    Google Scholar 

  29. G. Cavallaro, A. Agliolo Gallitto, L. Lisuzzo, G. Lazzara, Cellulose 26, 8853 (2019)

    Article  Google Scholar 

  30. P. Sharma, P.K. Diwan, Wood Sci. Technol. 51, 1081 (2017)

    Article  Google Scholar 

  31. M. Kimura, Z.-D. Qi, A. Isogai, Nord. Pulp Pap. Res. J. 31, 198 (2016)

    Article  Google Scholar 

  32. M. Broda, S.F. Curling, M. Frankowski, Wood Sci. Technol. 55, 971 (2021)

    Article  Google Scholar 

  33. C. Ye, Y. Huang, Q. Feng, B. Fei, Sci. Rep. 10, 6553 (2020)

    Article  ADS  Google Scholar 

  34. X. Ma, Y. Xiong, Y. Liu, J. Han, G. Duan, Y. Chen, S. He, C. Mei, S. Jiang, K. Zhang, Chem 8, 2342 (2022)

    Article  Google Scholar 

  35. A.N. Papadopoulos, C.A.S. Hill, A. Gkaraveli, Holz Als Roh-Und Werkstoff 61, 453 (2003)

    Article  Google Scholar 

  36. J. Shi, S. Avramidis, Wood Sci. Technol. 52, 1025 (2018)

    Article  Google Scholar 

  37. J. Yin, K. Song, Y. Lu, G. Zhao, Y. Yin, Wood Sci. Technol. 49, 987 (2015)

    Article  Google Scholar 

  38. R. J. Koestler, Wood Process Restor. (1999)

Download references

Acknowledgements

This work was funded by The Conservation Science and Technology Project of Zhejiang Provincial Administration of Cultural Heritage (Grant No. 2023018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingjian Zhang or Yulan Hu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1654 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Ma, Y., Zhang, B. et al. Feasibility study on conservation of water-saturated archaeological wood in earthen sites by hot air with different humidity. Eur. Phys. J. Plus 139, 55 (2024). https://doi.org/10.1140/epjp/s13360-024-04882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04882-0

Navigation