Abstract
We investigate the Markovian time evolution of the entropy production rate as a measure of irreversibility created in a quantum system consisting of two coupled bosonic modes interacting with a common thermal environment. We consider a general bilinear interaction between the modes, which accounts for the excitation exchange coupling and the two-mode squeezing coupling. The dynamics of the system is described in the framework of the theory of open quantum systems based on completely positive quantum dynamical semigroups. We provide an analytical and numerical investigation of this model for initial two-mode squeezed thermal states and show that the entropy production rate strongly depends on the two considered types of coupling between the modes.
Similar content being viewed by others
Data Availability Statement
No Data associated in the manuscript.
References
L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931)
R.C. Tolman, P.C. Fine, On the Irreversible Production of Entropy. Rev. Mod. Phys. 20, 51 (1948)
Machlup, S.; Onsager, L. Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 1953, 91, 1512
S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland Physics Publishing, Amsterdam, 1962)
T. Tomé, M.J. de Oliveira, Entropy production in nonequilibrium systems at stationary states. Phys. Rev. Lett. 108, 020601 (2012)
G.T. Landi, T. Tomé, M.J. de Oliveira, Entropy production in linear Langevin systems. J. Phys. A: Math. Theor. 46, 395001 (2013)
M.J. de Oliveira, Quantum Fokker-Planck-Kramers equation and entropy production. Phys. Rev. E 94, 012128 (2016)
Batalhão, T.B.; Gherardini, S.; Santos, J.P.; Landi, G.T.; Paternostro, M. Characterizing Irreversibility in Open Quantum Systems. In Thermodynamics in the Quantum Regime - Recent Progress and Outlook, Fundamental Theories of Physics, 395; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019
P. Strasberg, A. Winter, First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy. PRX Quantum 2, 030202 (2021)
G.T. Landi, M. Paternostro, Irreversible entropy production: From classical to quantum. Rev. Mod. Phys. 93, 035008 (2021)
Santos, J.P.; Céleri, L.C.; Landi, G.T.; Paternostro, M. The role of quantum coherence in non-equilibrium entropy production. npj Quantum Inf. 2019, 5, 23
A. Polkovnikov, Microscopic diagonal entropy and its connection to basic thermodynamic relations. Ann. Phys. 326, 486 (2011)
Brunelli, M.; Paternostro, M. Irreversibility and correlations in coupled oscillators. 2016, arXiv:1610.01172
T. Mihaescu, A. Isar, Dynamics of Entropy Production Rate in Two Coupled Bosonic Modes Interacting with a Thermal Reservoir. Entropy 24, 696 (2022)
I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (John Wiley & Sons, New York, 1967)
J.P. Santos, G.T. Landi, M. Paternostro, Wigner Entropy Production Rate. Phys. Rev. Lett. 118, 220601 (2017)
Sousa, Jucelino F.; Vieira, Carlos H. S.; Santos, Jonas F. G.; da Paz, Irismar G.; Coherence behavior of strongly coupled bosonic modes. Phys. Rev A 2022, 106, 032401
S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 1997)
A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, Open quantum systems. Int. J. Mod. Phys. E 3, 635 (1994)
V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of \(N\)-level systems. J. Math. Phys. 17, 821 (1976)
G. Lindblad, On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 48, 119 (1976)
A. Sandulescu, H. Scutaru, W. Scheid, Open quantum system of two coupled harmonic oscillators for application in deep inelastic heavy ion collisions. J. Phys. A: Math. Gen. 20, 2121 (1987)
C. Weedbrook, S. Pirandola, R. Garcìa-Patròn, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)
A. Ferraro, S. Olivares, M.G.A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005)
Serafini, A. Quantum Continuous Variables: A Primer of Theoretical Methods; CRC Press, Taylor & Francis Group, 2017
A. Isar, Entanglement generation in two-mode Gaussian systems in a thermal environment. Open Sys. Information Dyn. 23, 1650007 (2016)
T. Tomé, M.J. de Oliveira, Entropy production in irreversible systems described by a Fokker-Planck equation. Phys. Rev. E 82, 021120 (2010)
R.E. Spinney, I.J. Ford, Entropy production in full phase space for continuous stochastic dynamics. Phys. Rev. E 85, 051113 (2012)
G. Zicari, M. Brunelli, M. Paternostro, Assessing the role of initial correlations in the entropy production rate for nonequilibrium harmonic dynamics. Phys. Rev. Res. 2, 043006 (2020)
Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press, 2002
H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978)
Fearn, H; Collet, M.J. Representations of Squeezed States with Thermal Noise. J. Mod. Opt. 1988, 35, 553
M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494 (1989)
P.D. Drummond, Z. Ficek (eds.), Quantum Squeezing (Springer-Verlag, Berlin, 2004)
G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)
G. Manzano, Entropy production and fluctuations in a Maxwell’s refrigerator with squeezing. Eur. Phys. J. Spec. Topics 227, 285 (2018)
Acknowledgements
The authors acknowledge the financial support received from the Romanian Ministry of Research, Innovation and Digitisation, through the Project PN 23 21 01 01/2023.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mihaescu, T., Isar, A. Irreversibility and entropy production in two coupled bosonic modes interacting with a thermal environment. Eur. Phys. J. Plus 139, 82 (2024). https://doi.org/10.1140/epjp/s13360-024-04869-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-024-04869-x