Skip to main content
Log in

Irreversibility and entropy production in two coupled bosonic modes interacting with a thermal environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the Markovian time evolution of the entropy production rate as a measure of irreversibility created in a quantum system consisting of two coupled bosonic modes interacting with a common thermal environment. We consider a general bilinear interaction between the modes, which accounts for the excitation exchange coupling and the two-mode squeezing coupling. The dynamics of the system is described in the framework of the theory of open quantum systems based on completely positive quantum dynamical semigroups. We provide an analytical and numerical investigation of this model for initial two-mode squeezed thermal states and show that the entropy production rate strongly depends on the two considered types of coupling between the modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  2. R.C. Tolman, P.C. Fine, On the Irreversible Production of Entropy. Rev. Mod. Phys. 20, 51 (1948)

    Article  ADS  Google Scholar 

  3. Machlup, S.; Onsager, L. Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 1953, 91, 1512

  4. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland Physics Publishing, Amsterdam, 1962)

    Google Scholar 

  5. T. Tomé, M.J. de Oliveira, Entropy production in nonequilibrium systems at stationary states. Phys. Rev. Lett. 108, 020601 (2012)

    Article  ADS  Google Scholar 

  6. G.T. Landi, T. Tomé, M.J. de Oliveira, Entropy production in linear Langevin systems. J. Phys. A: Math. Theor. 46, 395001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.J. de Oliveira, Quantum Fokker-Planck-Kramers equation and entropy production. Phys. Rev. E 94, 012128 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Batalhão, T.B.; Gherardini, S.; Santos, J.P.; Landi, G.T.; Paternostro, M. Characterizing Irreversibility in Open Quantum Systems. In Thermodynamics in the Quantum Regime - Recent Progress and Outlook, Fundamental Theories of Physics, 395; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019

  9. P. Strasberg, A. Winter, First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy. PRX Quantum 2, 030202 (2021)

    Article  ADS  Google Scholar 

  10. G.T. Landi, M. Paternostro, Irreversible entropy production: From classical to quantum. Rev. Mod. Phys. 93, 035008 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Santos, J.P.; Céleri, L.C.; Landi, G.T.; Paternostro, M. The role of quantum coherence in non-equilibrium entropy production. npj Quantum Inf. 2019, 5, 23

  12. A. Polkovnikov, Microscopic diagonal entropy and its connection to basic thermodynamic relations. Ann. Phys. 326, 486 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Brunelli, M.; Paternostro, M. Irreversibility and correlations in coupled oscillators. 2016, arXiv:1610.01172

  14. T. Mihaescu, A. Isar, Dynamics of Entropy Production Rate in Two Coupled Bosonic Modes Interacting with a Thermal Reservoir. Entropy 24, 696 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (John Wiley & Sons, New York, 1967)

    Google Scholar 

  16. J.P. Santos, G.T. Landi, M. Paternostro, Wigner Entropy Production Rate. Phys. Rev. Lett. 118, 220601 (2017)

    Article  ADS  Google Scholar 

  17. Sousa, Jucelino F.; Vieira, Carlos H. S.; Santos, Jonas F. G.; da Paz, Irismar G.; Coherence behavior of strongly coupled bosonic modes. Phys. Rev A 2022, 106, 032401

  18. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 1997)

    Google Scholar 

  19. A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, Open quantum systems. Int. J. Mod. Phys. E 3, 635 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of \(N\)-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Lindblad, On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Sandulescu, H. Scutaru, W. Scheid, Open quantum system of two coupled harmonic oscillators for application in deep inelastic heavy ion collisions. J. Phys. A: Math. Gen. 20, 2121 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Weedbrook, S. Pirandola, R. Garcìa-Patròn, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  24. A. Ferraro, S. Olivares, M.G.A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005)

    Google Scholar 

  25. Serafini, A. Quantum Continuous Variables: A Primer of Theoretical Methods; CRC Press, Taylor & Francis Group, 2017

  26. A. Isar, Entanglement generation in two-mode Gaussian systems in a thermal environment. Open Sys. Information Dyn. 23, 1650007 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Tomé, M.J. de Oliveira, Entropy production in irreversible systems described by a Fokker-Planck equation. Phys. Rev. E 82, 021120 (2010)

    Article  ADS  Google Scholar 

  28. R.E. Spinney, I.J. Ford, Entropy production in full phase space for continuous stochastic dynamics. Phys. Rev. E 85, 051113 (2012)

    Article  ADS  Google Scholar 

  29. G. Zicari, M. Brunelli, M. Paternostro, Assessing the role of initial correlations in the entropy production rate for nonequilibrium harmonic dynamics. Phys. Rev. Res. 2, 043006 (2020)

    Article  Google Scholar 

  30. Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press, 2002

  31. H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  32. Fearn, H; Collet, M.J. Representations of Squeezed States with Thermal Noise. J. Mod. Opt. 1988, 35, 553

  33. M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494 (1989)

    Article  ADS  Google Scholar 

  34. P.D. Drummond, Z. Ficek (eds.), Quantum Squeezing (Springer-Verlag, Berlin, 2004)

    Google Scholar 

  35. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  36. G. Manzano, Entropy production and fluctuations in a Maxwell’s refrigerator with squeezing. Eur. Phys. J. Spec. Topics 227, 285 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the Romanian Ministry of Research, Innovation and Digitisation, through the Project PN 23 21 01 01/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelian Isar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihaescu, T., Isar, A. Irreversibility and entropy production in two coupled bosonic modes interacting with a thermal environment. Eur. Phys. J. Plus 139, 82 (2024). https://doi.org/10.1140/epjp/s13360-024-04869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04869-x

Navigation