Skip to main content
Log in

Neutrinos as qubits and qutrits

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We map neutrinos to qubit and qutrit states of quantum information theory by constructing the Poincaré sphere using SU(2) Pauli matrices and SU(3) Gell-Mann matrices, respectively. The construction of the Poincaré sphere in the two-qubit system enables us to construct the Bloch matrix, which yields valuable symmetries in the Bloch vector space of two neutrino systems. By identifying neutrinos with qutrits, we calculate the measures of qutrit entanglement for neutrinos. We use SU(3) Gell-Mann matrices tensor products to construct the Poincaré sphere of two qutrits neutrino systems. The comparison between the entanglement measures of bipartite qubits and bipartite qutrits in the two neutrino system are shown. The result warrants a study of two qutrits entanglement in the three neutrino system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667

    Book  Google Scholar 

  2. C.M. Caves, G.J. Milburn, Qutrit entanglement. Opt. Commun. 179(6), 439–446 (2000)

    Article  ADS  Google Scholar 

  3. P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997). https://doi.org/10.1016/S0375-9601(97)00416-7. [arXiv:quant-ph/9703004 [quant-ph]]

    Article  MathSciNet  ADS  Google Scholar 

  4. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245-2248 (1998). https://doi.org/10.1103/PhysRevLett.80.2245,[arXiv:quant-ph/9709029 [quant-ph]]

  5. V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61, 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306. [arXiv:quant-ph/9907047 [quant-ph]]

    Article  ADS  Google Scholar 

  6. O. Yong-Cheng, H. Fan, Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007). https://doi.org/10.1103/PhysRevA.75.062308

    Article  MathSciNet  ADS  Google Scholar 

  7. A.B. Klimov, R. Guzman, J.C. Retamal, C. Saavedra, Qutrit quantum computer with trapped ions. Phys. Rev. A 67, 062313 (2003). https://doi.org/10.1103/PhysRevA.67.062313

    Article  ADS  Google Scholar 

  8. B. Juliá-Díaz, J.M. Burdis, F. Tabakin, QDENSITY - a mathematica quantum computer simulation. Comp. Phys. Comm., 174, 914-934 (2006). https://doi.org/10.1016/j.cpc.2005.12.021. Also see: Comp. Phys. Comm., 180, 474 (2009). https://doi.org/10.1016/j.cpc.2008.10.006

  9. F. Tabakin, B. Juliá-Díaz, QCWAVE - a mathematica quantum computer simulation update. Comput. Phys. Commun. 182(8), 1693–1707 (2011). https://doi.org/10.1016/j.cpc.2011.04.010-

    Article  ADS  Google Scholar 

  10. F. Tabakin, QDENSITY/QCWAVE: a mathematica quantum computer simulation update. Comput. Phys. Commun. 201, 171–172 (2017). https://doi.org/10.1016/j.cpc.2015.12.015

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Herreño-Fierro, J.R. Luthra, Generalized concurrence and limits of separability for two qutrits. arXiv:quant-ph/0507223v1

  12. A. Kumar Jha, S. Mukherjee, B. A. Bambah, Tri-partite entanglement in neutrino oscillations. Mod. Phys. Lett. A 36(9), 2150056 (2021). https://doi.org/10.1142/S0217732321500565

    Article  MathSciNet  Google Scholar 

  13. M. Blasone, F. Dell’Anno, S. De Siena, F. Illuminati, Entanglement in neutrino oscillations. EPL 85, 50002 (2009). https://doi.org/10.1209/0295-5075/85/50002[arXiv:0707.4476 [hep-ph]]

  14. M. Blasone, F. Dell’Anno, S. De Siena, M. Di Mauro, F. Illuminati, Multipartite entangled states in particle mixing. Phys. Rev. D 77, 096002 (2008). https://doi.org/10.1103/PhysRevD.77.096002[arXiv:0711.2268 [quant-ph]]

    Article  ADS  Google Scholar 

  15. A. K. Alok, S. Banerjee, S. U. Sankar, Quantum correlations in terms of neutrino oscillation probabilities. Nucl. Phys. B 909, 65 (2016). https://doi.org/10.1016/j.nuclphysb.2016.05.001[arXiv:1411.5536 [hep-ph]]

  16. X.K. Song, Y. Huang, J. Ling, M.H. Yung, Quantifying quantum coherence in experimentally-observed neutrino oscillations. Phys. Rev. A 98 5, 050302(R) (2018). https://doi.org/10.1103/PhysRevA.98.050302[arXiv:1806.00715 [hep-ph]]

  17. J. Naikoo, A.K. Alok, S. Banerjee, S.U. Sankar, G. Guarnieri, C. Schultze, B.C. Hiesmayr, A quantum information theoretic quantity sensitive to the neutrino mass-hierarchy. Nucl. Phys. B 951, 114872 (2020). https://doi.org/10.1016/j.nuclphysb.2019.114872[arXiv:1710.05562 [hep-ph]]

  18. S. Banerjee, A.K. Alok, R. Srikanth, B.C. Hiesmayr, A quantum information theoretic analysis of three flavor neutrino oscillations. Eur. Phys. J. C 75 10, 487 (2015). https://doi.org/10.1140/epjc/s10052-015-3717-x[arXiv:1508.03480 [hep-ph]]

  19. J.A. Formaggio, D.I. Kaiser, M.M. Murskyj, T.E. Weiss, Violation of the Leggett-Garg inequality in neutrino oscillations. Phys. Rev. Lett. 117 5, 050402 (2016). https://doi.org/10.1103/PhysRevLett.117.050402[arXiv:1602.00041 [quant-ph]]

  20. J. Naikoo, A.K. Alok, S. Banerjee S.U. Sankar, Leggett-Garg inequality in the context of three flavour neutrino oscillation. Phys. Rev. D 99 9, 095001 (2019). https://doi.org/10.1103/PhysRevD.99.095001[arXiv:1901.10859 [hep-ph]]

  21. S. Shafaq, P. Mehta, Enhanced violation of Leggett-Garg inequality in three flavour neutrino oscillations via non-standard interactions. J. Phys. G 48 8, 085002 (2021). https://doi.org/10.1088/1361-6471/abff0d[arXiv:2009.12328 [hep-ph]]

  22. G.M. Quinta, A. Sousa, Y. Omar, Predicting leptonic CP violation via minimization of neutrino entanglement. [arXiv:2207.03303 [hep-ph]]

  23. C.A. Argüelles, B.J.P. Jones, Neutrino oscillations in a quantum processor. Phys. Rev. Res. 1, 033176 (2019). https://doi.org/10.1103/PhysRevResearch.1.033176. [arXiv:1904.10559 [quant-ph]].

    Article  Google Scholar 

  24. M.J. Molewski, B.J.P. Jones, Scalable qubit representations of neutrino mixing matrices. Phys. Rev. D 105 5, 056024 (2022). https://doi.org/10.1103/PhysRevD.105.056024.(arXiv:2111.05401v1 [quant-ph])

  25. B. Hall, A. Roggero, A. Baroni, J. Carlson, Simulation of collective neutrino oscillations on a quantum computer. Phys. Rev. D 104 6, 063009 (2021). https://doi.org/10.1103/PhysRevD.104.063009,[arXiv:2102.12556 [quant-ph]]

  26. A.K. Jha, A. Chatla, Quantum studies of neutrinos on IBMQ processors. Eur. Phys. J. Spec. Top. 231, 141–149 (2022). https://doi.org/10.1140/epjs/s11734-021-00358-9

    Article  Google Scholar 

  27. O. Gamel, Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 93, 062320 (2016). https://doi.org/10.1103/PhysRevA.93.062320. arXiv:1602.01548 [quant-ph]

    Article  MathSciNet  ADS  Google Scholar 

  28. P. Mehta, Topological phase in two flavor neutrino oscillations. Phys. Rev. D 79, 096013 (2009). https://doi.org/10.1103/PhysRevD.79.096013. [arXiv:0901.0790 [hep-ph]]

    Article  ADS  Google Scholar 

  29. M. Blasone, P.A. Henning, G. Vitiello, Berry phase for oscillating neutrinos. Phys. Lett. B 466, 262–266 (1999). https://doi.org/10.1016/S0370-2693(99)01137-5[arXiv:hep-th/9902124 [hep-th]]

  30. Arvind, K.S. Mallesh, N. Mukunda, A Generalized Pancharatnam geometric phase formula for three level quantum systems. J. Phys. A 30, 2417–2431 (1997). https://doi.org/10.1088/0305-4470/30/7/021[arXiv:quant-ph/9605042 [quant-ph]]

  31. K.S. Mallesh, N. Mukunda, The algebra and geometry of SU(3) matrices. Pramana - J. Phys. 49, 371–383 (1997). https://doi.org/10.1007/BF02847424

    Article  ADS  Google Scholar 

  32. G. Khanna, S. Mukhopadhyay, R. Simon, N. Mukunda, Geometric phases for SU(3) representations and three level quantum systems. Ann. Phys. 253, 55–82 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  33. A.T. Bölükbasi, T. Dereli, On the SU(3) parametrization of qutrits. J. Phys. Conf. Ser. 36, 28 (2006)

    Article  ADS  Google Scholar 

  34. C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, (Published to Oxford Scholarship Online: January 2010 (Book)), https://doi.org/10.1093/acprof:oso/9780198508717.001.0001

  35. D.B. Lichtenberg, Unitary symmetry and elementary particles (Second Edition Book), Chapter 6 - Multiplets, Academic Press, 72–101, (1978). ISBN 9780124484603, https://doi.org/10.1016/B978-0-12-448460-3.50011-7

  36. C. Giganti, S. Lavignac, M. Zito, Neutrino oscillations: the rise of the PMNS paradigm. Prog. Part. Nucl. Phys. 98, 1–54 (2018). https://doi.org/10.1016/j.ppnp.2017.10.001,[arXiv:1710.00715 [hep-ex]]

  37. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP 09, 178 (2020). https://doi.org/10.1007/JHEP09(2020)178. [arXiv:2007.14792 [hep-ph]]

    Article  ADS  Google Scholar 

  38. D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002). https://doi.org/10.1103/PhysRevLett.88.040404

    Article  MathSciNet  ADS  Google Scholar 

  39. M.A. Jafarizadeh, Y. Akbari, N. Behzadi, Two-qutrit entanglement witnesses and Gell-Mann matrices. Eur. Phys. J. D, 47 2, 283–293 (2008). https://doi.org/10.1140/epjd/e2008-00041-3,arXiv:0802.0270

  40. V. Amitrano, A. Roggero, P. Luchi, F. Turro, L. Vespucci, F. Pederiva, Trapped-ion quantum simulation of collective neutrino oscillations. [arXiv:2207.03189 [quant-ph]]

  41. P. Gokhale, J.M. Baker, C. Duckering, F.T. Chong, N.C. Brown, K.R. Brown, Extending the frontier of quantum computers with qutrits. IEEE Micro 40(3), 64–72 (2020). https://doi.org/10.1109/MM.2020.2985976

    Article  Google Scholar 

  42. B. Li, Z.-H. Yu, S.-M. Fei, Geometry of quantum computation with qutrits. Sci. Rep. 3, 2594 (2013).https://doi.org/10.1038/srep02594,arXiv:1309.3357

  43. P. Siwach, A.M. Suliga, A.B. Balantekin, Entanglement in three-flavor collective neutrino oscillations. Phys. Rev. D 107 2, 23019 (2023) https://doi.org/10.1103/PhysRevD.107.023019[arXiv:2211.07678 [hep-ph]]

Download references

Acknowledgements

AKJ acknowledges a project funded by SERB, India, with Ref. No. CRG/2022/003460, for partial support towards this research. AC would like to acknowledge the support from DST for this work through the project: DST/02/0201/2019/01488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar Jha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.K., Chatla, A. & Bambah, B.A. Neutrinos as qubits and qutrits. Eur. Phys. J. Plus 139, 68 (2024). https://doi.org/10.1140/epjp/s13360-024-04861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04861-5

Navigation