Skip to main content
Log in

Impact of trihybrid nanofluid on the transient thermal performance of inclined dovetail fin with emphasis on internal heat generation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The current study focuses on examining the transient thermal performance of a dovetail fin structure that is completely immersed in a trihybrid nanofluid and is formulated by the combination of \({\text{MWCNT}}, {\text{Ag}}\), and \({\text{Cu}}\) nanoparticles with the hybrid base fluid \({{\text{C}}}_{2}{{\text{H}}}_{6}{{\text{O}}}_{2}-{{\text{H}}}_{2}{\text{O}}.\) The fin's porous medium is modelled using Darcy's law to simulate the interaction between the fluid and the solid. The resulting nonlinear partial differential equation is converted into a non-dimensional form and resolved using the finite difference method (FDM) to understand the physical implications of the model. Factors like surface convection \(({\text{Nc}})\), radiation \(({\text{Nr}})\) and internally generated heat \((Q)\) have been considered in assessing the fin's heat exchange. This investigation highlights the impact of variables such as tip tapering, dimensionless time, inclination angle, full wet condition, porosity, internal heat generation, and ambient temperature on the fin's thermal profile. The efficiency of the fin structure is graphically explored and discussed. Compared to mono and binary hybrid nanofluids, the trihybrid nanofluid demonstrates superior thermal response and notably the introduction of the trihybrid nanofluid significantly enhances the fin's efficiency. Dovetail fin conjunction with the trihybrid nanofluid provides superior heat transfer rate because increase in the surface area is the major finding of this study. These findings are crucial for improving heat transfer in various industrial settings. Moreover, this advancement holds the potential to revolutionize cooling and heating processes in sectors like automotive and aerospace engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Abbreviations

\({C}_{{\text{p}}}\) :

Specific heat at constant pressure \(({\text{J}}/\mathrm{kg K})\)

\(K\) :

Permeability \(({{\text{m}}}^{2})\)

\(L\) :

Length of the fin \(({\text{m}})\)

\(C\) :

Fin taper ratio

\({\text{Le}}\) :

Lewis number

\(G\) :

Generation parameter

\(M\) :

Thermogeometric parameter

\({\text{Nc}}\) :

Convection parameter

\({\text{Nr}}\) :

Radiative parameter

\(T\) :

Local fin temperature \(({\text{K}})\)

\({T}_{{\text{a}}}\) :

Ambient temperature \(({\text{K}})\)

\({T}_{{\text{b}}}\) :

Base temperature \(({\text{K}})\)

\(X\) :

Dimensionless length

\({b}_{2}\) :

Variable parameter \((1/{\text{K}})\)

\(g\) :

Acceleration due to gravity \(({\text{m}}/{{\text{s}}}^{2})\)

\(h\) :

Heat transfer coefficient \(({\text{W}}/{{\text{m}}}^{2}{\text{K}})\)

\({h}_{{\text{a}}}\) :

Heat transfer coefficient at temperature \({T}_{{\text{a}}}({\text{W}}/{{\text{m}}}^{2}{\text{K}})\)

\({h}_{{\text{D}}}\) :

Uniform mass transfer co efficient \(({\text{kg}}/{{\text{m}}}^{2}{\text{s}})\)

\({i}_{fg}\) :

Latent heat of water evaporation \(({\text{J}}/{\text{kg}})\)

\(k\) :

Thermal conductivity \(({\text{J}}/{\text{kg}})\)

\({n}_{1}\) :

Wet parameter

\(p\) :

Power index of temperature dependent \(h\)

\({t}^{*}\) :

Time \(({\text{s}})\)

\({q}^{*}\) :

Internal rate of heat generation \(({\text{W}}/{{\text{m}}}^{3})\)

\({q}_{{\text{a}}}^{*}\) :

Internal rate of heat generation at temperature \({T}_{{\text{a}}}({\text{W}}/{{\text{m}}}^{3})\)

\(t\left(x\right)\) :

Fin thickness at distance \(x(m)\)

\({t}_{{\text{b}}}\) :

Fin base thickness \(({\text{m}})\)

\(W\) :

Width \(({\text{m}})\)

\(\rho \) :

Density \(({\text{kg}}/{{\text{m}}}^{3})\)

\(\mu \) :

Dynamic viscosity \(({\text{kg}}/{\text{ms}})\)

\(\tau \) :

Dimensionless time

\(\alpha \) :

Angle of inclination

\({\epsilon }_{{\text{g}}}\) :

Internal heat generation parameter \((1/{\text{K}})\)

\({\epsilon }_{{\text{G}}}\) :

Non-dimensional internal heat generation parameter

\(\nu \) :

Kinematic viscosity \(({{\text{m}}}^{2}/{\text{s}})\)

\(\theta \) :

Non-dimensional temperature

\({\theta }_{{\text{a}}}\) :

Dimensionless ambient temperature

\(\omega \) :

Humidity ratio of saturated air

\({\omega }_{{\text{a}}}\) :

Humidity ratio is surrounding air

\(\phi \) :

Solid volume fraction of nanoparticles

\(\varphi \) :

Porosity

\(\delta \) :

A geometrical quantity that defines the tip semi fin thickness \(({\text{m}})\)

\(\sigma \) :

Stefan–Boltzmann constant \(({\text{W}}/{{\text{m}}}^{2}{{\text{K}}}^{4})\)

\(\epsilon \) :

Surface emissivity of fin

\(\beta \) :

Volumetric thermal expansion: coefficient \((1/{\text{K}})\)

\({\text{a}}\) :

Ambient

\({\text{b}}\) :

Fin base

\({\text{f}}\) :

Fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

\({\text{thnf}}\) :

Trihybrid nanofluid

References

  1. A.D. Kraus et al., Extended surface heat transfer. Appl. Mech. Rev. 54(5), B92–B92 (2001)

    Article  Google Scholar 

  2. S. Kiwan, Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46(10), 1046–1055 (2007)

    Article  Google Scholar 

  3. W.A. Khan, A. Aziz, Transient heat transfer in a functionally graded convecting longitudinal fin. Heat Mass Transf. 48, 1745–1753 (2012)

    Article  ADS  Google Scholar 

  4. M.T. Darvishi, F. Kani, R.S.R. Gorla, Natural convection and radiation in a radial porous fin with variable thermal conductivity. Int. J. Appl. Mech. Eng. 19(1), 27–37 (2014)

    Article  Google Scholar 

  5. A. Aziz, M.N. Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers. Manage. 52(8–9), 2876–2882 (2011)

    Article  Google Scholar 

  6. A. Aziz, T. Mohsen, Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transf. Asian Res. 41(2), 99–113 (2012)

    Article  Google Scholar 

  7. S.A. Atouei et al., Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods. Appl. Therm. Eng. 89, 299–305 (2015)

    Article  Google Scholar 

  8. S. Kiwan, M.A. Al-Nimr, Using porous fins for heat transfer enhancement. J. Heat Transfer 123(4), 790–795 (2001)

    Article  Google Scholar 

  9. S. Kiwan, Thermal analysis of natural convection porous fins. Transp. Porous Media 67, 17–29 (2007)

    Article  Google Scholar 

  10. M. Nabati, M. Jalalvand, S. Taherifar, Sinc collocation approach through thermal analysis of porous fin with magnetic field. J. Therm. Anal. Calorim. 144, 2145–2158 (2021)

    Article  Google Scholar 

  11. M.H. Sharqawy, S.M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer–an analytical solution. Appl. Therm. Eng. 28(17–18), 2279–2288 (2008)

    Article  Google Scholar 

  12. M.T. Darvishi et al., Thermal analysis of natural convection and radiation in a fully wet porous fin. Int. J. Numer. Meth. Heat Fluid Flow 26(8), 2419–2431 (2016)

    Article  Google Scholar 

  13. R. Das, B. Kundu, Direct and inverse approaches for analysis and optimization of fins under sensible and latent heat load. Int. J. Heat Mass Transf. 124, 331–343 (2018)

    Article  Google Scholar 

  14. G. Sowmya, B.J. Gireesha, M. Madhu, Analysis of a fully wetted moving fin with temperature-dependent internal heat generation using the finite element method. Heat Transf. 49(4), 1939–1954 (2020)

    Article  Google Scholar 

  15. S. Hosseinzadeh et al., Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections. Case Stud. Therm. Eng. 30, 101757 (2022)

    Article  Google Scholar 

  16. R.J. Moitsheki, C. Harley, Transient heat transfer in longitudinal fins of various profiles with temperature-dependent thermal conductivity and heat transfer coefficient. Pramana 77, 519–532 (2011)

    Article  ADS  Google Scholar 

  17. M.T. Darvishi, R.S.R. Gorla, F. Khani, Unsteady thermal response of a porous fin under the influence of natural convection and radiation. Heat Mass Transf. 50, 1311–1317 (2014)

    Article  ADS  Google Scholar 

  18. A.V. Pasha, P. Jalili, D.D. Ganji, Analysis of unsteady heat transfer of specific longitudinal fins with temperature-dependent thermal coefficients by DTM. Alex. Eng. J. 57(4), 3509–3521 (2018)

    Article  Google Scholar 

  19. G. Sowmya, B.J. Gireesha, H. Berrehal, An unsteady thermal investigation of a wetted longitudinal porous fin of different profiles. J. Therm. Anal. Calorim. 143, 2463–2474 (2021)

    Article  Google Scholar 

  20. S. Akhtar, S. Almutairi, S. Nadeem, Impact of heat and mass transfer on the Peristaltic flow of non-Newtonian Casson fluid inside an elliptic conduit: exact solutions through novel technique. Chin. J. Phys. 78, 194–206 (2022)

    Article  MathSciNet  Google Scholar 

  21. S. Nadeem et al., Mathematical model of convective heat transfer for peristaltic flow of Rabinowitsch fluid in a wavy rectangular duct with entropy generation. Phys. Scripta 97(6), 065205 (2022)

    Article  ADS  Google Scholar 

  22. L.B. McCash et al., Novel idea about the peristaltic flow of heated Newtonian fluid in elliptic duct having ciliated walls. Alex. Eng. J. 61(4), 2697–2707 (2022)

    Article  Google Scholar 

  23. H.J. Lane, P.J. Heggs, Extended surface heat transfer—the dovetail fin. Appl. Therm. Eng. 25(16), 2555–2565 (2005)

    Article  Google Scholar 

  24. B.J. Gireesha, M.L. Keerthi, K.M. Eshwarappa, Heat transfer analysis of longitudinal fins of trapezoidal and dovetail profile on an inclined surface. Phys. Scr. 96(12), 125209 (2021)

    Article  ADS  Google Scholar 

  25. G. Sowmya et al., Significance of convection and internal heat generation on the thermal distribution of a porous dovetail fin with radiative heat transfer by spectral collocation method. Micromachines 13(8), 1336 (2022)

    Article  Google Scholar 

  26. N.A. Khan, M. Sulaiman, F.S. Alshammari, Heat transfer analysis of an inclined longitudinal porous fin of trapezoidal, rectangular and dovetail profiles using cascade neural networks. Struct. Multidiscip. Optim. 65, 251 (2022). https://doi.org/10.1007/s00158-022-03350-6

    Article  Google Scholar 

  27. F. Gamaoun, A. Abdulrahman, G. Sowmya, R. Kumar, U. Khan, A.M. Alotaibi, S.M. Eldin, R.S. Varun Kumar, Non-Fourier heat transfer in a moving longitudinal radiative-convective dovetail fin. Case Stud. Therm. Eng. 41, 102623 (2023). https://doi.org/10.1016/j.csite.2022.102623

    Article  Google Scholar 

  28. A. Baslem et al., Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation. J. Mol. Liq. 307, 112920 (2020)

    Article  Google Scholar 

  29. B.J. Gireesha et al., Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Comput. Methods Progr. Biomed. 185, 105166 (2020)

    Article  Google Scholar 

  30. G.R. Manohar et al., Dynamics of hybrid nanofluid through a semi spherical porous fin with internal heat generation. Partial Diff. Equ. Appl. Math. 4, 100150 (2021)

    Google Scholar 

  31. N. Talbi et al., Increment of heat transfer by graphene-oxide and molybdenum-disulfide nanoparticles in ethylene glycol solution as working nanofluid in penetrable moveable longitudinal fin. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2026527

    Article  Google Scholar 

  32. M.L. Keerthi, B.J. Gireesha, G. Sowmya, Impact of shape-dependent hybrid nanofluid on transient efficiency of a fully wet porous longitudinal fin. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08058-3

    Article  Google Scholar 

  33. T. Elnaqeeb, I.L. Animasaun, N.A. Shah, Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities. Zeitschrift für Naturforschung A 76(3), 231–243 (2021)

    Article  ADS  Google Scholar 

  34. I.L. Animasaun et al., Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf. Interfaces 28, 101654 (2022)

    Article  Google Scholar 

  35. J.S. Goud et al., Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Stud. Therm. Eng. 35, 102113 (2022)

    Article  Google Scholar 

  36. M.M. AlBaidani et al., Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source. Case Stud. Therm. Eng. 44, 102825 (2023)

    Article  Google Scholar 

  37. R. Girish et al., Effect of temperature-dependent internal heat generation over exponential and dovetail convective-radiative porous fin wetted in hybrid nanofluid. Case Stud. Therm. Eng. 49, 103214 (2023)

    Article  Google Scholar 

  38. M.L. Keerthi, B.J. Gireesha, G. Sowmya, Numerical investigation of transient thermal behaviour of fully wet and porous moving semi-spherical fin. Phys. Scr. 97(8), 085220 (2022)

    Article  ADS  Google Scholar 

  39. G. Domairry, M. Fazeli, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Commun. Nonlinear Sci. Numer. Simul. 14(2), 489–499 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, for financing, as part of the DST-FIST venture for HEIs (Grant No. SR/FST/MS-I/2018/23(C)).

Author information

Authors and Affiliations

Authors

Contributions

PLPK contributed to conceptualization, methodology, software, writing—original draft, writing—review and editing. BJG contributed to conceptualization, methodology, writing—review and editing, supervision. PV contributed to conceptualization, methodology, software, writing—review and editing.

Corresponding author

Correspondence to B. J. Gireesha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan Kumar, P.L., Gireesha, B.J. & Venkatesh, P. Impact of trihybrid nanofluid on the transient thermal performance of inclined dovetail fin with emphasis on internal heat generation. Eur. Phys. J. Plus 139, 60 (2024). https://doi.org/10.1140/epjp/s13360-023-04848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04848-8

Navigation