Skip to main content
Log in

N-type In (or Al) doped Cu2O thin films by magnetron sputtering

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The ultimate aim of this work is to achieve cation (In/Al) doped stable n-type Cu2O thin films via industrially viable magnetron sputtering technique. The deposited thin films’ structural, optical and electrical characteristics have been investigated in light of their prospective application as solar cell buffer layers. The optical emission spectroscopy confirms the presence of cationic dopants in the plasma. X-ray diffraction and Raman studies confirm the cubic Cu2O structure without any kind of secondary phases. According to the X-ray photoelectron spectroscopy results, both the dopants are present in + 3 oxidation states The surface morphology and grain size/shape have been studied using scanning electron microscopy and atomic force microscopy. The transmittance spectroscopy was used to evaluate optical properties and the corresponding absorption coefficient was found to be 105–106 cm−1 for all the films. The radiative defects in Cu2O have been identified via photoluminescence spectroscopy. Hall effect measurement confirms the feasibility of changing the conductivity of Cu2O from p-type to n-type by cationic dopants with an increase in carrier density from 1014 to 1017 cm−3. The work function of p-Cu2O, n-(3.12%)In:Cu2O and n-(2.25%)Al:Cu2O thin films were found to be 4.85 eV, 4.24 eV and 4.15 eV respectively using ultraviolet photoelectron spectroscopy. The fabricated Mo/p-Cu2O/n-(In/Al):Cu2O/n-AZO solar cells show a rectification curve with a very low open circuit voltage (VOC) under light indicating the photovoltaic behaviour.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: The authors declare that the data and equations supporting the results of this study are available within the paper. The raw data sets generated during the current study are available from the corresponding author upon reasonable request.]

References

  1. T. Minami, Y. Nishi, T. Miyata, J. Semicond. 37, 014002 (2016)

    Article  ADS  Google Scholar 

  2. A. Lakshmanan, Z.C. Alex, S.R. Meher, Mater. Sci. Semicond. Process. 148, 106818 (2022)

    Article  Google Scholar 

  3. P. Sawicka-Chudy, G. Wisz, M. Sibiński, M. Cholewa, P. Potera, Głowa, R. Pawełek, Arch. Metall. Mater. 64, 243–250 (2019)

    Google Scholar 

  4. T. Minami, Y. Nishi, T. Miyata, Appl. Phys. Express 6, 014002 (2013)

    Article  Google Scholar 

  5. T. Minami, Y. Nishi, T. Miyata, Appl. Phys. Lett. 105, 212104 (2014)

    Article  ADS  Google Scholar 

  6. S. Rühle, Sol. Energy 130, 139–147 (2016)

    Article  ADS  Google Scholar 

  7. Toshiba Corporation, Toshiba Boosts Transparent Cu2O Tandem Solar Cell to A New High (2022)

  8. K. Fujimoto, T. Oku, T. Akiyama, Appl. Phys. Express 6, 086503 (2013)

    Article  ADS  Google Scholar 

  9. T. Minami, Y. Nishi, T. Miyata, J.I. Nomoto, Appl. Phys. Express 4, 2–5 (2011)

    Article  Google Scholar 

  10. Z. Zang, Appl. Phys. Lett. 112, 042106 (2018)

    Article  ADS  Google Scholar 

  11. A. Kumar-Rana, D.K. Ban, M. Patel, J.H. Yun, J. Kim, Mater. Lett. 255, 126517 (2019)

    Article  Google Scholar 

  12. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, A. Bakin, Sol. Energy Mater. Sol. Cells 145, 454–461 (2016)

    Article  Google Scholar 

  13. M. Yang, L. Zhu, Y. Li, L. Cao, Y. Guo, J. Alloys Compd. 578, 143–147 (2013)

    Article  Google Scholar 

  14. Y. Zhao, H.B. Yin, Y.J. Fu, X.M. Wang, W.D. Wu, Chin. Phys. B 28, 087301 (2019)

    Article  ADS  Google Scholar 

  15. S. Siol, J.C. Hellmann, S.D. Tilley, M. Graetzel, J. Morasch, J. Deuermeier, W. Jaegermann, A. Klein, ACS Appl. Mater. Interfaces 8, 21824–21831 (2016)

    Article  Google Scholar 

  16. T. Minami, Y. Nishi, T. Miyata, S. Abe, ECS Trans. 50, 59–68 (2013)

    Article  Google Scholar 

  17. J. Kaur, O. Bethge, R.A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, T. Dimopoulos, Sol. Energy Mater. Sol. Cells 161, 449–459 (2017)

    Article  Google Scholar 

  18. N. Winkler, S. Edinger, J. Kaur, R.A. Wibowo, W. Kautek, T. Dimopoulos, J. Mater. Sci. 53, 12231–12243 (2018)

    Article  ADS  Google Scholar 

  19. I. Biswas, P. Roy, U. Maity, P.K. Sinha, A.K. Chakraborty, Thin Solid Films 711, 138301 (2020)

    Article  ADS  Google Scholar 

  20. R.E. Brandt, M. Young, H.H. Park, A. Dameron, D. Chua, Y.S. Lee, G. Teeter, R.G. Gordon, T. Buonassisi, Appl. Phys. Lett. 105, 263901 (2014)

    Article  ADS  Google Scholar 

  21. V. Khomyak, I. Shtepliuk, V. Khranovskyy, R. Yakimova, Vacuum 121, 120–124 (2015)

    Article  ADS  Google Scholar 

  22. W. Niu, M. Zhou, Z. Ye, L. Zhu, Sol. Energy Mater. Sol. Cells 144, 717–723 (2016)

    Article  Google Scholar 

  23. A. Lakshmanan, Z.C. Alex, S.R. Meher, Mater. Today Sustain. 20, 100244 (2022)

    Article  Google Scholar 

  24. S. Ishizuka, T. Maruyama, K. Akimoto, Jpn. J. Appl. Phys. 39, 0–3 (2000)

    Article  Google Scholar 

  25. Y. Alajlani, F. Placido, H.O. Chu, R. De Bold, L. Fleming, D. Gibson, Thin Solid Films 642, 45–50 (2017)

    Article  ADS  Google Scholar 

  26. H.A. Al-Jawhari, Mater. Sci. Semicond. Process. 40, 241–252 (2015)

    Article  Google Scholar 

  27. A.A. Ejigu, L. Chao, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 061205 (2017)

    ADS  Google Scholar 

  28. S.F.U. Farhad, D. Cherns, J.A. Smith, N.A. Fox, D.J. Fermín, Mater. Des. 193, 108848 (2020)

    Article  Google Scholar 

  29. M. Xu, X. Liu, W. Xu, H. Xu, X. Hao, X. Feng, J. Alloys 769, 484–489 (2018)

    Article  Google Scholar 

  30. W. Siripala, J.R.P. Jayakody, Solar Energy Mater. 14, 23–27 (1986)

    Article  Google Scholar 

  31. D.O. Scanlon, G.W. Watson, J. Phys. Chem. Lett. 1, 2582–2585 (2010)

    Article  Google Scholar 

  32. Q. Bai, W. Wang, Q. Zhang, M. Tao, J. Appl. Phys. 111, 023709 (2012)

    Article  ADS  Google Scholar 

  33. Z.Y. Zhao, J. Yi, D.C. Zhou, Chin. Phys. B 23, 017401 (2014)

    Article  ADS  Google Scholar 

  34. M. Benaissa, H. Si Abdelkader, G. Merad, Optik 207, 164440 (2020)

    Article  ADS  Google Scholar 

  35. N.G. Elfadill, M.R. Hashim, K.M. Chahrour, S.A. Mohammed, Semicond. Sci. Technol. 31, 065001 (2016)

    Article  ADS  Google Scholar 

  36. X. Han, K. Han, M. Tao, Electrochem. Solid State Lett. 12, H89–H91 (2009)

    Article  Google Scholar 

  37. X. Han, K. Han, M. Tao, Thin Solid Films 518, 5363–5367 (2010)

    Article  ADS  Google Scholar 

  38. L. Yu, L. Xiong, Y. Yu, J. Phys. Chem. C 119, 22803–22811 (2015)

    Article  Google Scholar 

  39. A.O. Musa, T. Akomolafe, M.J. Carter, Sol. Energy Mater. Sol. Cells 51, 305–316 (1998)

    Article  Google Scholar 

  40. A. Živković, A. Roldan, N.H. De Leeuw, Phys. Rev. Mater. 3, 115202 (2019)

    Article  Google Scholar 

  41. S.R. Meher, A. Lakshmanan, D. Gupta, Z.C. Alex, Mater. Today Commun. 26, 102015 (2021)

    Article  Google Scholar 

  42. X.M. Cai, X.Q. Su, F. Ye, H. Wang, X.Q. Tian, D.P. Zhang, P. Fan, J.T. Luo, Z.H. Zheng, G.X. Liang, V.A.L. Roy, Appl. Phys. Lett. 107, 083901 (2015)

    Article  ADS  Google Scholar 

  43. X.M. Cai, X.Q. Su, F. Ye, D.P. Zhang, J.T. Luo, P. Fan, Z.H. Zheng, G.X. Liang, V.A.L. Roy, J.J. Xiao, J. Alloys Compd. 697, 5–10 (2017)

    Article  Google Scholar 

  44. C. Zhu, M.J. Panzer, ACS Appl. Mater. Interfaces 7, 5624–5628 (2015)

    Article  Google Scholar 

  45. Physics laboratory (U.S.), NIST Atom. Spectra Database (1995)

  46. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  47. Y. Yang, J. Han, X. Ning, W. Cao, W. Xu, L. Guo, ACS Appl. Mater. Interfaces 6, 22534–22543 (2014)

    Article  Google Scholar 

  48. J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, X. Du, Sci. Rep. 4, 7240 (2014)

    Article  ADS  Google Scholar 

  49. Y. Wang, Y. Lü, W. Zhan, Z. Xie, Q. Kuang, L. Zheng, J. Mater. Chem. A 3, 12796–12803 (2015)

    Article  Google Scholar 

  50. N. Ghazal, M. Madkour, A. Abdel Nazeer, S.S.A. Obayya, S.A. Mohamed, RSC Adv. 11, 39262–39269 (2021)

    Article  ADS  Google Scholar 

  51. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, ed. by Chastain (Perkin-Elmer Corporation, United States of America, 1992), p. 213–214

  52. D. Powell, A. Compaan, J.R. Macdonald, R.A. Forman, Phys. Rev. B 12, 20 (1975)

    Article  ADS  Google Scholar 

  53. M. Umar, M.Y. Swinkels, M. De Luca, C. Fasolato, L. Moser, G. Gadea, L. Marot, T. Glatzel, I. Zardo, Thin Solid Films 732, 138763 (2021)

    Article  ADS  Google Scholar 

  54. A. Sekkat, V.H. Nguyen, C.A. Masse de La Huerta, L. Rapenne, D. Bellet, A. Kaminski-Cachopo, G. Chichignoud, D. Muñoz-Rojas, Commun Mater. 2, 78 (2021)

    Article  Google Scholar 

  55. L. Debbichi, M.C. Marco De Lucas, J.F. Pierson, P. Krüger, J. Phys. Chem. C 116(18), 10232–10237 (2012)

    Article  Google Scholar 

  56. K.K. Markose, M. Shaji, S. Bhatia, P.R. Nair, K.J. Saji, A. Antony, M.K. Jayaraj, ACS Appl. Mater. Interfaces 12, 12972–12981 (2020)

    Article  Google Scholar 

  57. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, AIP Adv. 5, 1–6 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (no. CRG/2018/000500) for the financial support. The authors would also like to acknowledge Department of Science and Technology (DST), New Delhi, India for providing the financial support through FIST (Fund for Improvement of S&T Infrastructure in Higher Education Institution) project [no. SR/FST/ETI-015/2011].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Meher.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmanan, A., Alex, Z.C. & Meher, S.R. N-type In (or Al) doped Cu2O thin films by magnetron sputtering. Eur. Phys. J. Plus 139, 62 (2024). https://doi.org/10.1140/epjp/s13360-023-04846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04846-w

Navigation