Skip to main content
Log in

Inequivalent quantum conference protocol supervised by a controller

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we discuss a quantum conference protocol whose purpose is to establish some means of sharing quantum information between the participators. This is accomplished by utilizing a single quantum entanglement resource which connects the parties involved in the protocol along with a controller whose role is of supervision. We consider three parties in different locations who exchange two different non-maximally entangled Bell states and a single qubit amongst themselves. These three states are known to three different parties, respectively, but possessed by none of them. The present protocol falls within the category of remote state preparation protocols. We study the effect of noise on our otherwise perfect protocol. Further, we discuss a scheme for the generation of the quantum channel we use in this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Vaidman, Teleportation of quantum states. Phys. Rev. A 49(2), 1473–1476 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Karlsson, M. Bourennane, Quantum teleportation using three-particle entanglement. Phys. Rev. A. Atom. Mol. Opt. Phys. 58(6), 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. B.S. Shi, Y.K. Jiang, G.C. Guo, Probabilistic teleportation of two-particle entangled state. Phy. Lett. A. General Atom. Solid State Phys. 268(3), 161–164 (2000)

  5. S. Bandyopadhyay, Teleportation and secret sharing with pure entangled states. Phys. Rev. A. Atom. Mol. Opt. Phys. 62(1), 012301–012308 (2000)

    ADS  Google Scholar 

  6. M. Ikram, S.Y. Zhu, M.S. Zubairy, Quantum teleportation of an entangled state. Phys. Rev. A. Atom. Mol. Opt. Phys. 62(2), 022301–022307 (2000)

    ADS  MathSciNet  Google Scholar 

  7. S. Muralidharan, P.K. Panigrahi, Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  8. Y.H. Li, L.P. Nie, Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  9. S.B. Choudhury, A. Dhara, A bidirectional teleportation protocol for arbitrary two-qubit state under the supervision of a third party. Int. J. Theor. Phys. 55, 2275–2285 (2016)

    Article  Google Scholar 

  10. Y.H. Li, L.P. Nie, X.L. Li, M.H. Sang, Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    Article  Google Scholar 

  11. W. Li, X.W. Zha, J.X. Qi, Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016)

    Article  MathSciNet  Google Scholar 

  12. B.S. Choudhury, S. Samanta, Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. B.S. Choudhury, S. Samanta, A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes. Int. J. Quantum Inf. 16(3), 1850026 (2018)

    Article  MathSciNet  Google Scholar 

  14. B.S. Choudhury, S. Samanta, Asymmetric bidirectional quantum state exchange between Alice and Bob through a third party. Optik 231, 166435 (2021)

    Article  ADS  Google Scholar 

  15. C.H. Bennett, D.P. Divincenzo, P.W. Shor, J.A. Smolin, B.M. Terhal, W.K. Wootters, Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  16. M.Y. Ye, Y.S. Zhang, G.C. Guo, Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  17. Y. Xia, J. Song, H.S. Song, Multiparty remote state preparation. J. Phys. B. At. Mol. Opt. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  18. D. Wang, Y.M. Liu, Z.J. Zhang, Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)

    Article  ADS  Google Scholar 

  19. D. Wang, Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quantum Inf. 8(8), 1265–1275 (2010)

    Article  Google Scholar 

  20. D. Wang, Y.D. Hu, Z.Q. Wang, L. Ye, Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    Article  ADS  Google Scholar 

  21. B.S. Choudhury, S. Samanta, Remote preparation of some three particle entangled states under divided information. Int. J. Theor. Phys. 58, 83–91 (2019)

    Article  Google Scholar 

  22. P. Jia-yin, L. Hong-xuan, Cyclic remote state preparation. Int. J. Theor. Phys. 60(4), 1593–1602 (2021)

    Article  MathSciNet  Google Scholar 

  23. M. Chaudhary, M. Fadel, E.O. Ilo-Okeke, A.N. Pyrkov, V. Ivannikov, T. Byrnes, Remote state preparation of two-component Bose-Einstein condensates. Phys. Rev. A 103(6), 062417 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. N.B. An, B.S. Choudhury, S. Samanta, Two-way remote preparations of inequivalent quantum states under a common control. Int. J. Theor. Phys. 60, 47–62 (2021)

    Article  MathSciNet  Google Scholar 

  25. H.K. Lo, Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  26. A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quantum conference. Quantum Inf. Process. 17(161), 1–22 (2018)

    MathSciNet  Google Scholar 

  27. B.S. Choudhury, S. Samanta, A controlled asymmetric quantum conference. Int. J. Theor. Phys. 61, 14 (2022)

    Article  MathSciNet  Google Scholar 

  28. B.S. Choudhury, S. Samanta, A protocol for conferencing through shared multipartite entanglement. Mord. Phys. lett. A. 37(8), 2250047 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Zhao, L. Huang, Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720–728 (2017)

    Article  Google Scholar 

  30. L. Sun, S. Wu, Z. Qu, M. Wang, X. Wang, The effect of quantum noise on two different deterministic remote state preparation of an arbitrary three-particle state protocols. Quantum Inf. Process. 17, 1–18 (2018)

    Article  MathSciNet  Google Scholar 

  31. S.-X. Jiang, R.-G. Zhou, R. Xu, G. Luo, Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access 7(8737687), 80530–80541 (2019)

    Article  Google Scholar 

  32. S.X. Jiang, Enhancing remote state preparation via five-qubit cluster state in noisy environments. Opt. Quant. Electron. 53(2), 104 (2021)

    Article  Google Scholar 

  33. L. Gong, X.-B. Chen, G. Xu, Y. Chang, Y.-X. Yang, Multi-party controlled cyclic hybrid quantum communication protocol in noisy environment. Quantum Inf. Process. 21(11), 375 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Yuan et al., Optimizing resource consumption, operation complexity and efficiency in quantum state sharing. J. Phys. B. At. Mol. Opt. Phys. 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

  35. B.S. Choudhury, S. Samanta, Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Zhang, X.W. Zha, Y.J. Duan, Z.H. Wei, Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)

    Article  Google Scholar 

  37. S.-H. Fang, M. Jiang, Bidirectional and asymmetric controlled quantum information transmission via five-qubit brown state. Int. J. Theor. Phys. 56(5), 1530–1536 (2017)

    Article  MathSciNet  Google Scholar 

  38. Y. Song, J.L. Ni, Z.Y. Wang, Y. Lu, L.F. Han, Deterministic bidirectional remote state preparation of a- and symmetric quantum states with a proper quantum channel. Int. J. Theor. Phys. 56(10), 3175–3187 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The valuable suggestions of the reviewers are gratefully acknowledged.

Funding

This work is supported by Indian Institute of Engineering Science and Technology, Shibpur, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed.

Corresponding author

Correspondence to Manoj Kumar Mandal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M.K., Choudhury, B.S. & Samanta, S. Inequivalent quantum conference protocol supervised by a controller. Eur. Phys. J. Plus 139, 59 (2024). https://doi.org/10.1140/epjp/s13360-023-04819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04819-z

Navigation