Skip to main content
Log in

Dynamics of Ag–\({\text{TiO}}_{2} /{\text{H}}_{2} {\text{O}}\) between two coaxial cylinders: a computational approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It is widely acknowledged that the dispersion of nanoparticles considerably improves the thermal conductivity of a working fluid. The current research aims to examine hybrid nanofluid flow between two concentric cylinders in the presence of thermal radiation. The flow is driven by  an external pressure gradient, and a magnetic field is applied normal to the flow direction. The impact of nanoparticle concentration, magnetic parameter, radiation parameter, and pressure gradient on the velocity, temperature, and Nusselt number are analyzed. The obtained results showed that heat transfer rates of the fluid increased by 12.4%, 10.1%, and 11.3% when Ag, \({\hbox {TiO}_2}\), and Ag–\({\hbox {TiO}_2}\) nanoparticles were added to the base fluid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data.

References

  1. P. Patil, M. Kulkarni, Analysis of MHD mixed convection in a Ag-\({\text{ TiO}_2}\) hybrid nanofluid flow past a slender cylinder. Chin. J. Phys. 73, 406–419 (2021). https://doi.org/10.1016/j.cjph.2021.07.030

    Article  Google Scholar 

  2. P. Patil, A. Shashikant, P. Hiremath, Effects of surface roughness on mixed convection nanoliquid flow over slender cylinder with liquid hydrogen diffusion. Int. J. Hydrog. Energy 44, 11121–11133 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.240

    Article  Google Scholar 

  3. M. Zhang, X. Wang, O. Øiseth, Torsional vibration of a circular cylinder with an attached splitter plate in laminar flow. Ocean Eng. 236, 109514 (2021). https://doi.org/10.1016/j.oceaneng.2021.109514

    Article  Google Scholar 

  4. P. Patil, B. Goudar, M.A. Sheremet, Tangent hyperbolic ternary hybrid nanofluid flow over a rough-yawed cylinder due to impulsive motion. J. Taibah Univ. Sci. 17, 2199664 (2023). https://doi.org/10.1080/16583655.2023.2199664

    Article  Google Scholar 

  5. H. Hanif, A finite difference method to analyze heat and mass transfer in kerosene based \(\gamma\)-oxide nanofluid for cooling applications. Phys. Scr. 96, 095215 (2021). https://doi.org/10.1088/1402-4896/ac098a

    Article  ADS  Google Scholar 

  6. D. Prakasha, M. Sudharani, K.G. Kumar, A.J. Chamkha, Comparative study of hybrid (graphene/magnesium oxide) and ternary hybrid (graphene/zirconium oxide/magnesium oxide) nanomaterials over a moving plate. Int. Commun. Heat Mass Transf. 140, 106557 (2023). https://doi.org/10.1016/j.icheatmasstransfer.2022.106557

    Article  Google Scholar 

  7. V. Puneeth, S. Manjunatha, K.G. Kumar, M.G. Reddy, Perspective of multiple slips on 3D flow of \({\text{ Al}_{2}\text{ O}_{3}}-{\text{ TiO}_{2}}-\text{ CuO }/{\text{ H}_{2}\text{ O }}\) ternary nanofluid past an extending surface due to non-linear thermal radiation. Waves Random Complex Med. (2022). https://doi.org/10.1080/17455030.2022.2041766

    Article  Google Scholar 

  8. H. Hanif, S. Shafie, Interaction of multi-walled carbon nanotubes in mineral oil based Maxwell nanofluid. Sci. Rep. 12, 1–16 (2022). https://doi.org/10.1038/s41598-022-07958-y

    Article  Google Scholar 

  9. M. Sudharani, D. Prakasha, K.G. Kumar, A.J. Chamkha, Computational assessment of hybrid and tri hybrid nanofluid influenced by slip flow and linear radiation. Eur. Phys. J. Plus 138, 257 (2023). https://doi.org/10.1140/epjp/s13360-023-03852-2

    Article  Google Scholar 

  10. P. Patil, S. Benawadi, V. Muttannavar, Mixed bioconvective flow of Williamson nanofluid over a rough vertical cone. Arab. J. Sci. Eng. 48, 2917–2928 (2023). https://doi.org/10.1007/s13369-022-07048-1

    Article  Google Scholar 

  11. H. Hanif, S. Shafie, R. Roslan, A. Ali, Collision of hybrid nanomaterials in an upper-convected Maxwell nanofluid: a theoretical approach. J. King Saud Univ. Sci. (2022). https://doi.org/10.1016/j.jksus.2022.102389

    Article  Google Scholar 

  12. L.A. Lund, Z. Omar, I. Khan, E.-S.M. Sherif, Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow. Symmetry 12, 276 (2020)

    Article  ADS  Google Scholar 

  13. K.G. Kumar, E.H.B. Hani, M.E.H. Assad, M. Rahimi-Gorji, S. Nadeem, A novel approach for investigation of heat transfer enhancement with ferromagnetic hybrid nanofluid by considering solar radiation. Microsyst. Technol. 27, 97–104 (2021). https://doi.org/10.1007/s00542-020-04920-8

    Article  Google Scholar 

  14. H. Hanif, S. Shafie, Impact of \({\text{ Al}_{2}\text{ O}_{3}}\) in electrically conducting mineral oil-based Maxwell nanofluid: application to the petroleum industry. Fractal Fract. 6, 180 (2022). https://doi.org/10.3390/fractalfract6040180

    Article  Google Scholar 

  15. A. Ali, R. Jana, S. Das, Significance of entropy generation and heat source: the case of peristaltic blood flow through a ciliated tube conveying Cu-Ag nanoparticles using phan-thien-tanner model. Biomech. Model. Mechanobiol. 20, 2393–2412 (2021). https://doi.org/10.1007/s10237-021-01515-8

    Article  Google Scholar 

  16. K. GaneshKumar, M. GnaneswaraReddy, S.A. Shehzad, F. Abbasi, A least square study on flow and radiative heat transfer of a hybrid nanofluid in a moving frame by considering a spherically-shaped particle. Rev. Mexicana de física 66, 162–170 (2020). https://doi.org/10.31349/revmexfis.66.162

    Article  MathSciNet  Google Scholar 

  17. H. Hanif, S. Shafie, Application of Cattaneo heat flux to Maxwell hybrid nanofluid model: a numerical approach. Eur. Phys. J. Plus 137, 989 (2022). https://doi.org/10.1140/epjp/s13360-022-03209-1

    Article  Google Scholar 

  18. R. Varun Kumar, R. Punith Gowda, R. Naveen Kumar, M. Radhika, B. Prasanna kumara, Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified fourier heat flux. SN Appl. Sci. 3, 1–9 (2021)

    Article  Google Scholar 

  19. Y.B. Kho, R. Jusoh, M.Z. Salleh, M.H. Ariff, N. Zainuddin, Magnetohydrodynamics flow of Ag-\({\text{ TiO}_{2}}\) hybrid nanofluid over a permeable wedge with thermal radiation and viscous dissipation. J. Magn. Magn. Mater. 565, 170284 (2023). https://doi.org/10.1016/j.jmmm.2022.170284

    Article  Google Scholar 

  20. P. Patil, B. Goudar, E. Momoniat, Magnetized bioconvective micropolar nanofluid flow over a wedge in the presence of oxytactic microorganisms. Case Stud. Therm. Eng. 49, 103284 (2023). https://doi.org/10.1016/j.csite.2023.103284

    Article  Google Scholar 

  21. M.G. Reddy, N. Kumar, B. Prasannakumara, N. Rudraswamy, K.G. Kumar, Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Commun. Theor. Phys. 73, 045002 (2021). https://doi.org/10.1088/1572-9494/abdaa5

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Patil, S. Benawadi, E. Momoniat, Thermal analysis of bioconvective nanofluid flow over a sphere in presence of multiple diffusions and a periodic magnetic field. Case Stud. Therm. Eng. 51, 103569 (2023). https://doi.org/10.1016/j.csite.2023.103569

    Article  Google Scholar 

  23. P. Patil, B. Goudar, M. Patil, E. Momoniat, Bioconvective periodic MHD Eyring-Powell fluid flow around a rotating cone: influence of multiple diffusions and oxytactic microorganisms. Alex. Eng. J. 81, 636–655 (2023). https://doi.org/10.1016/j.aej.2023.09.056

    Article  Google Scholar 

  24. S. Das, S. Sarkar, R. Jana, Feature of entropy generation in Cu-\({\text{ Al}_{2}\text{ O}_{3}}\)/ethylene glycol hybrid nanofluid flow through a rotating channel. Bionanoscience 10, 950–967 (2020). https://doi.org/10.1007/s12668-020-00773-7

    Article  Google Scholar 

  25. K.G. Kumar, M.G. Reddy, A. Aldalbahi, M. Rahimi-Gorji, M. Rahaman et al., Application of different hybrid nanofluids in convective heat transport of carreau fluid. Chaos, Solitons & Fractals 141, 110350 (2020). https://doi.org/10.1016/j.chaos.2020.110350

    Article  MathSciNet  Google Scholar 

  26. H. Hanif, S. Shafie, N.A. Rawi, A.R.M. Kasim, Entropy analysis of magnetized ferrofluid over a vertical flat surface with variable heating. Alex. Eng. J. (2022). https://doi.org/10.1016/j.aej.2022.09.052

    Article  Google Scholar 

  27. H. Hanif, L.A. Lund, R. Mahat, S. Shafie, Heat transfer analysis of Maxwell hybrid nanofluid with fractional cattaneo heat flux. Alex. Eng. J. 72, 545–557 (2023). https://doi.org/10.1016/j.aej.2023.04.022

    Article  Google Scholar 

  28. P.M. Patil, N. Kumbarwadi, A. Shashikant, Effects of MHD mixed convection with non-uniform heat source/sink and cross-diffusion over exponentially stretching sheet. Int. J. Numer. Methods Heat Fluid Flow 28, 1238–1255 (2018). https://doi.org/10.1108/HFF-04-2017-0149

    Article  Google Scholar 

  29. P.M. Patil, S.H. Doddagoudar, P.S. Hiremath, E. Momoniat, Influence of applied magnetic field on mixed convective nanofluid flow past an exponentially stretching surface with roughness. J. Braz. Soc. Mech. Sci. Eng. 41, 1–11 (2019). https://doi.org/10.1007/s40430-019-2065-4

    Article  Google Scholar 

  30. P. Patil, A. Shashikant, P. Hiremath, Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness. Int. J. Hydrog. Energy 43, 20101–20117 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.033

    Article  Google Scholar 

  31. H. Hanif, S. Shafie, A. Chamkha, Effect of Ohmic heating on magnetohydrodynamic flow with variable pressure gradient: a computational approach. Waves Random Complex Med. (2022). https://doi.org/10.1080/17455030.2022.2141916

    Article  Google Scholar 

  32. S. Das, S. Chakraborty, R. Jana, Entropy analysis of Poiseuille nanofluid flow in a porous channel with slip and convective boundary conditions under magnetic field, World. J. Eng. 18, 870–885 (2021). https://doi.org/10.1108/WJE-12-2020-0660

    Article  Google Scholar 

  33. S. Das, S. Sarkar, R. Jana, Entropy generation minimization of magnetohydrodynamic slip flow of Casson \({\text{ H}_{2}\text{ O }}\)+ Cu nanofluid in a porous microchannel. J. Nanofluids 8, 205–221 (2019). https://doi.org/10.1166/jon.2019.1554

    Article  Google Scholar 

  34. F. Shahzad, R.U. Haq, Q.M. Al-Mdallal, Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. J. Mol. Liq. 224, 322–332 (2016). https://doi.org/10.1016/j.molliq.2016.09.097

    Article  Google Scholar 

  35. H. Hanif, Cattaneo-Friedrich and Crank-Nicolson analysis of upper-convected Maxwell fluid along a vertical plate. Chaos Solitons Fractals 153, 111463 (2021). https://doi.org/10.1016/j.chaos.2021.111463

    Article  Google Scholar 

  36. H. Hanif, A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid. Math. Comput. Simul. 191, 1–13 (2022). https://doi.org/10.1016/j.matcom.2021.07.024

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Universiti Teknologi Malaysia for the funding under UTM Fundamental Research (UTMFR: Q.J130000.3854.23H22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanifa Hanif.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, H., Lund, L.A. & Shafie, S. Dynamics of Ag–\({\text{TiO}}_{2} /{\text{H}}_{2} {\text{O}}\) between two coaxial cylinders: a computational approach. Eur. Phys. J. Plus 138, 1153 (2023). https://doi.org/10.1140/epjp/s13360-023-04802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04802-8

Navigation