Skip to main content
Log in

Antichiral-like and antichiral edge states based on photonic Floquet lattices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Photonic Floquet lattices provide an excellent platform for manipulating different topologically protected edge states. However, antichiral edge states have not been discussed much in Floquet lattices. Here, we propose a waveguide structure composed of two honeycomb Floquet photonic lattices rotating in opposite directions and find that the edge states propagate in the same direction on two opposite parallel zigzag boundaries of the system, thus achieving antichiral-like edge states. Furthermore, we propose a method to achieve smooth transition of the system without the artificial internal interface, thus eliminating the internal interface of the system, forming two co-propagating one-way transport channels at the system boundary, and discovering the antichiral edge states which are completely different from the well-studied topological edge states of chiral photonic systems. The long-distance propagation dynamics of the corresponding boundary states are numerically studied by comparing the intensity mode. In addition to their relevance for the topological properties of the Floquet lattice system, the results of this study may be applied to multi-channel optical switches, optical functional devices and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. T. Ozawa, H.M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, I. Carusotto, Topological photonics. Rev. Mod. Phys. 91(1), 015006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Lu, J.D. Joannopoulos, M. Soljačić, Topological photonics. Nat. Photonics 8(11), 821–829 (2014)

    Article  ADS  Google Scholar 

  3. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42(25), 1698–1701 (1979)

    Article  ADS  Google Scholar 

  4. N. Malkova, I. Hromada, X. Wang, G. Bryant, Z. Chen, Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34(11), 1633–1635 (2009)

    Article  ADS  Google Scholar 

  5. J. Zak, Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62(23), 2747 (1989)

    Article  ADS  Google Scholar 

  6. Z. Wang, Y.D. Chong, J.D. Joannopoulos, M. Soljačić, Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100(1), 013905 (2007)

    Article  ADS  Google Scholar 

  7. Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009)

    Article  ADS  Google Scholar 

  8. S.A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, M. Soljačić, Experimental observation of large chern numbers in photonic crystals. Phys. Rev. Lett. 115(25), 253901 (2015)

    Article  ADS  Google Scholar 

  9. A.B. Khanikaev, S. Hossein Mousavi, W.K. Tse, M. Kargarian, A.H. MacDonald, G. Shvets, Photonic topological insulators. Opt. Photonics News 24(12), 43–43 (2013)

    Article  ADS  Google Scholar 

  10. X. Cheng, C. Jouvaud, X. Ni, S.H. Mousavi, A.Z. Genack, A.B. Khanikaev, Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15(5), 542–548 (2016)

    Article  ADS  Google Scholar 

  11. Y. Yang, Y.F. Xu, T. Xu, H.X. Wang, J.H. Jiang, X. Hu, Z.H. Hang, Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120(21), 217401 (2018)

    Article  ADS  Google Scholar 

  12. Y. Lumer, Y. Plotnik, M.C. Rechtsman, M. Segev, Nonlinearly induced PT transition in photonic systems. Phys. Rev. Lett. 111(26), 263901 (2013)

    Article  ADS  Google Scholar 

  13. D. Leykam, M.C. Rechtsman, Y.D. Chong, Anomalous topological phases and unpaired dirac cones in photonic floquet topological insulators. Phys. Rev. Lett. 117(1), 013902 (2016)

    Article  ADS  Google Scholar 

  14. B. Zhu, H. Zhong, Y. Ke, X. Qin, A.A. Sukhorukov, Y. S., Kivshar, C. Lee, C., Topological Floquet edge states in periodically curved waveguides. Phys. Rev. A, 98(1), 013855 (2018).

  15. L. Lu, Z. Wang, D. Ye, L. Ran, L., Fu, J. D. Joannopoulos, M. Soljačić, Topological matter. Experimental observation of Weyl points. Science, 349(6248), 622 (2015).

  16. M. Xiao, Q. Lin, S. Fan, Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117(5), 057401 (2016)

    Article  ADS  Google Scholar 

  17. B. Yang, Q. Guo, B. Tremain, R. Liu, L.E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, S. Zhang, Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 359(6379), 1013–1016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Q. Lin, M. Xiao, L. Yuan, S. Fan, Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731 (2016)

    Article  ADS  Google Scholar 

  19. T. Kawakami, X. Hu, Symmetry-guaranteed nodal-line semimetals in an fcc lattice. Phys. Rev. B 96(23), 235307 (2017)

    Article  ADS  Google Scholar 

  20. R. Bi, Z. Yan, L. Lu, Z. Wang, Nodal-knot semimetals. Phys. Rev. B 96(20), 201305 (2017)

    Article  ADS  Google Scholar 

  21. D. Leykam, Y.D. Chong, Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117(14), 143901 (2016)

    Article  ADS  Google Scholar 

  22. Y. Hadad, A. B. Khanikaev, A. B., A. Alu,  Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B, Condensed Matter, 93(15), 155112.1–155112.8 (2016).

  23. X. Zhou, Y. Wang, D. Leykam, Y.D. Chong, Optical isolation with nonlinear topological photonics. New J. Phys. 19(9), 095002 (2017)

    Article  ADS  Google Scholar 

  24. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14(1), 11–19 (2018)

    Article  Google Scholar 

  25. Z.Y. Tian, S.Q. Xie, Y.W. Du, Y.F. Ma, J. Zhao, W.Y. Gao, C.J. Wang, Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents. Eur. J. Med. Chem. 44(1), 393–399 (2009)

    Article  Google Scholar 

  26. H.F. Wang, S.K. Gupta, X.Y. Zhu, M.H. Lu, X.P. Liu, Y.F. Chen, Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling. Phys. Rev. B 98(21), 214101 (2018)

    Article  ADS  Google Scholar 

  27. B. Xiao, K. Lai, Y. Yu, T. Ma, G. Shvets, S.M. Anlage, Exciting reflectionless unidirectional edge modes in a reciprocal photonic topological insulator medium. Phys. Rev. B 94(19), 195427 (2016)

    Article  ADS  Google Scholar 

  28. J. Hu, B. Liang, J. Chen, X. Cai, Q. Jiang, S. Zhuang, Influence of surface termination on inverse Goos-H"anchen shift of negatively refractive photonic crystals. J. Opt. 18(7), 075103 (2016)

    Article  ADS  Google Scholar 

  29. H.C. Chan, G.Y. Guo, Tuning topological phase transitions in hexagonal photonic lattices made of triangular rods. Phys. Rev. B 97(4), 045422 (2018)

    Article  ADS  Google Scholar 

  30. B.Y. Xie, H.F. Wang, H.X. Wang, X.Y. Zhu, J.H. Jiang, M.H. Lu, Y.F. Chen, Second-order photonic topological insulator with corner states. Phys. Rev. B 98(20), 205147 (2018)

    Article  ADS  Google Scholar 

  31. C.W. Peterson, W.A. Benalcazar, T.L. Hughes, G. Bahl, A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555(7696), 346 (2018)

    Article  ADS  Google Scholar 

  32. Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto, Photonic crystal nanocavity based on a topological corner state. Optica 6(6), 786–789 (2019)

    Article  ADS  Google Scholar 

  33. Z.K. Shao, H.Z. Chen, S. Wang, X.R. Mao, Z.Q. Yang, S.L. Wang, R.M. Ma, A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15(1), 67–72 (2020)

    Article  ADS  Google Scholar 

  34. G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, M. Segev, Topological insulator laser: theory. Science, 359.6381: eaar4003 (2018).

  35. Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, Y. Arakawa, Topological photonic crystal nanocavity laser. Commun. Phys. 1(1), 1–8 (2018)

    Article  Google Scholar 

  36. M. Hafezi, E.A. Demler, M.D. Lukin, J.M. Taylor, Robust optical delay lines with topological protection. Nat. Phys. 7(11), 907–912 (2011)

    Article  Google Scholar 

  37. J. Chen, W. Liang, Z.Y. Li, Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals. Phys. Rev. B 99(1), 014103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. Y. Yang, Y. Poo, R.X. Wu, Y. Gu, P. Chen, Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals. Appl. Phys. Lett. 102(23), 465 (2013)

    Article  Google Scholar 

  39. J. X. Fu, R. J. Liu, Z. Y. Li, Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces. Appl. Phys. Lett, 97(4), 041112–041112–3. (2010)

  40. S.A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, M. Soljačić, Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett. 115(25), 253901–253901 (2015)

    Article  ADS  Google Scholar 

  41. S.A. Skirlo, L. Lu, M. Soljacic, Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113(11), 113904 (2014)

    Article  ADS  Google Scholar 

  42. Y. Yang, Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, H. Chen, Realization of a three-dimensional photonic topological insulator. Nature 565(7741), 622–626 (2019)

    Article  ADS  Google Scholar 

  43. E. Colomes, M. Franz, Antichiral edge states in a modified Haldane nanoribbon. Phys. Rev. Lett, 120(8), 086603.1–086603.5 (2018).

  44. C. Wang, L. Zhang, P. Zhang, J. Song, Y.X. Li, Influence of antichiral edge states on Andreev reflection in graphene-superconductor junction. Phys. Rev. B 101(4), 045407 (2020)

    Article  ADS  Google Scholar 

  45. M.M. Denner, J.L. Lado, O. Zilberberg, Antichiral states in twisted graphene multilayers. Phys. Rev. Research 2(4), 043190 (2020)

    Article  ADS  Google Scholar 

  46. S. Mandal, R. Ge, T.C.H. Liew, Antichiral edge states in an exciton polariton strip. Phys. Rev. B 99(11), 115423 (2019)

    Article  ADS  Google Scholar 

  47. D. Bhowmick, P. Sengupta, Antichiral edge states in Heisenberg ferromagnet on a honeycomb lattice. Phys. Rev. B 101(19), 195133 (2020)

    Article  ADS  Google Scholar 

  48. P. Zhou, G. G. Liu, Y. Yang, Y. H. Hu, S. Ma, H. Xue, Q. Wang, L. Deng, B. Zhang, Observation of photonic antichiral edge states. Phys. Rev. Lett. 125(26) (2020).

  49. Y. Yang, D. Zhu, Z. Hang, Y. Chong, Observation of antichiral edge states in a circuit lattice. Sci. China Phys. Mech. 64(5), 1–7 (2021)

    Article  Google Scholar 

  50. X. Cheng, J. Chen, L. Zhang, L. Xiao, S. Jia, Antichiral edge states and hinge states based on the Haldane model. Phys. Rev. B 104(8), L081401 (2021)

    Article  ADS  Google Scholar 

  51. K. Fang, Z. Yu, S. Fan, Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6(11), 782–787 (2012)

    Article  ADS  Google Scholar 

  52. Y.T. Katan, D. Podolsky, Modulated Floquet Topological Insulators. Phys. Rev. Lett. 110(1), 016802 (2013)

    Article  ADS  Google Scholar 

  53. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, A. Szameit, Photonic Floquet topological insulators. Nature 496(7444), 196–200 (2013)

    Article  ADS  Google Scholar 

  54. Z. Shi, M. Zuo, H. Li, Edge states supported by different boundaries of two helical lattices with opposite helicity. Results Phys 24, 104191 (2021)

    Article  Google Scholar 

  55. Z. Shi, M. Zuo, H. Li, D. Preece, Y. Zhang, Z. Chen, Topological edge states and solitons on a dynamically tunable domain wall of two opposing helical waveguide arrays. ACS Photonics 8(4), 1077–1084 (2021)

    Article  Google Scholar 

  56. S.K. Ivanov, Y.V. Kartashov, L.J. Maczewsky, A. Szameit, V.V. Konotop, Bragg solitons in topological Floquet insulators. Opt. Lett. 45(8), 2271–2274 (2020)

    Article  ADS  Google Scholar 

  57. J. Wang, Z. Shi, X. Ji, Y. Zhang, H. Li, Y. Deng, K. Xie, Topological edge states on different domain walls of two opposed helical waveguide arrays. Photonics. 10(11), MDPI (2023).

  58. J. Chen, W. Liang, Z.Y. Li, Antichiral one-way edge states in a gyromagnetic photonic crystal. Phys. Rev. B 101(21), 214102 (2020)

    Article  ADS  Google Scholar 

  59. Pyrialakos, Georgios G. et al. Antichiral topological phases and protected bulk transport in dual-helix Floquet lattices. Phys. Rev. B. 107(17), 174313 (2023).

  60. J. Chen, Z. Li, Configurable topological beam splitting via antichiral gyromagnetic photonic crystal. Opto-Electron. Sci 1, 220001 (2022)

    Article  Google Scholar 

  61. J. Chen, Z. Li, Prediction and observation of robust one-way bulk states in a gyromagnetic photonic crystal. Phys. Rev. Lett. 128(25), 257401 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2020A1515010623), the Leading Talents of Guangdong Province Program, and the Natural Science Foundation of China (11874126, 52175457).

Author information

Authors and Affiliations

Authors

Contributions

ZS contributed to conceptualization; JW, XJ and YZ contributed to methodology; JW, XJ and HL contributed to validation; YL and YD contributed to formal analysis; ZS, YD, and KX contributed to investigation; JW and XJ contributed to writing—original draft preparation; ZS and KX contributed to writing—review and editing; KX contributed to funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhiwei Shi, Yaohua Deng or Kang Xie.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ji, X., Shi, Z. et al. Antichiral-like and antichiral edge states based on photonic Floquet lattices. Eur. Phys. J. Plus 138, 1149 (2023). https://doi.org/10.1140/epjp/s13360-023-04797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04797-2

Navigation