Skip to main content
Log in

A new iterative Broyden Legendre Wavelet Galerkin FEM applied to study heat transfer in two-dimensional elliptic and plate fins

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a novel hybrid method is applied to study heat transfer in 2-D fins experiencing a range of conditions, including dry, wet, and partially wet, subjected to the most generalized boundaries. This model represents a boundary value problem involving nonlinear heat equations of second order. A new iterative Broyden Legendre Wavelet Galerkin Finite Element approach is used for solving the problem. The process of discretizing the Y coordinate and applying Hadamard, Khatri–Rao, and face-splitting matrices products with the Legendre wavelet Galerkin technique transforms the main problem into a system of nonlinear algebraic equations. The solution for this system is obtained by using the iterative Broyden technique. It has been found that when the values of latent heat and Biot number rise, the temperature in an elliptic fin falls. In a specific case, the present results are compared with exact values and found to be approximately the same. The impacts of various parameters, including Biot number, latent heat, Kirpichev number, fin thickness, Lewis number, \(\mu\), \(\eta\) and \(\xi\) on the temperature profile of a fin are discussed in detail. A comparative analysis of elliptic and plate fin efficiencies for different boundary conditions is provided and highest efficiencies observed in the plate fin. The finding indicates that better fin efficiency requires a lower fin thickness and higher Biot number values. The present method has been successfully applied to linear and nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors' comment: Data available on the request.]

Abbreviations

A :

Surface area of the fins (mm\(^2)\)

Ar :

Tube axis proportion (a/b)

a :

The elliptic tube’s semi-major axis (mm)

b :

The elliptic tube’s semi-minor axis (mm)

Bi :

Biot number, (hb/k)

Ki :

Kirpichev number

\(c_p\) :

Dry air specific heat (kj kg\(^{-1}\) \(^\circ {\text {C}}^{-1})\)

h :

Convective heat coefficients average (W m\(^{-1}\) \(^\circ {\text {C}}^{-1})\)

\(h_d\) :

Average mass transmission coefficient on humidity ratio variance (kg \({{\text {m}}^{-2}} {{\text {s}}^{-1}})\)

i :

Humid air enthalpy (kj \({\text {kg}}^{-1})\)

\(i_{fg}\) :

Latent heat (kj \({\text {kg}}^{-1})\)

k :

Fins thermal conductivity (Wm\(^{-1}\) \(^\circ C^{-1})\)

Le :

Lewis number, \((Le={(h/{h_d}{c_p})}^{3/2})\)

l :

Height of the fins (mm)

q :

Rate of heat transfer (W)

T :

Temperature \((^\circ {\text {C}})\)

W :

Humidity proportion (kg water vapor/kg dry air)

\(W_a\) :

Ambient air humidity proportion (kg water vapor/kg dry air)

\(\eta _{f}\) :

Efficiency of the fins

\(\delta\) :

Thickness of the fins (mm)

\(l^*\) :

Dimensionless fin height

X :

Dimensionless coordinate

Y :

Dimensionless coordinate

\(\delta ^*\) :

Dimensionless fin thickness

\(\theta\) :

Dimensionless temperature

BLWGFEM:

Broyden Legendre Wavelet Galerkin Finite Element Method

BVP:

Boundary Value Problem

BC Ist:

Boundary Condition of first kind

BC IInd:

Boundary Condition of second kind

BC IIIrd:

Boundary Condition of third kind

References

  1. R.R. Harper, W.B. Brown, Mathematical equations for heat conduction in the fins of air-cooled engines. No. NACA-TR-158 (1923)

  2. M. Jakob, Heat Transfer (Wiley, New York, 1949)

    Google Scholar 

  3. J.B.J. Fourier, Theorie Analytique de la Chaleur, CF Didot, Paris, 1822. Also, Analytical Theory of Heat, translated with notes by A. Freeman. Cambridge Uni. Press, London, 466 (1878)

  4. B. Kundu, P.K. Das, Performance analysis and optimization of straight taper fins with variable heat transfer coefficient. Int. J. Heat Mass Transf. 45(24), 4739–4751 (2002)

    Article  Google Scholar 

  5. D.Q. Kern, A.D. Kraus, Extended Surface Heat Transfer (McGraw Hill, New York, 1972)

    Google Scholar 

  6. A.D. Kraus, A. Aziz, J. Welty, D.P. Sekulic, Extended surface heat transfer. Appl. Mech. Rev. 54(5), B92–B92 (2001)

    Article  Google Scholar 

  7. H.G. Zhang, E.H. Wang, B.Y. Fan, Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery. Energy Conv. Manag. 65, 438–447 (2013). https://doi.org/10.1016/j.enconman.2012.09.017

    Article  Google Scholar 

  8. H. Nemati, M.A. Moghimi, P. Sapin, C.N. Markides, Shape optimisation of air-cooled finned-tube heat exchangers. Int. J. Therm. Sci. 150, 106233 (2020). https://doi.org/10.1016/j.ijthermalsci.2019.106233

    Article  Google Scholar 

  9. H. Brauer, Compact heat exchangers. Chem. Process Eng. 45(8), 451–460 (1964)

    Google Scholar 

  10. J.Y. Jang, Y.Y. Jyh, Experimental and 3-D numerical analysis of the thermal-hydraulic characteristics of elliptic finned-tube heat exchangers. Heat Transf. Eng. 19(4), 55–67 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. O. Uzol, C. Cengiz, Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications: Part 1-endwall heat transfer and total pressure loss characteristics. In Turbo Expo: Power for Land, Sea, and Air, American Society Mech. Engi. 78521, V003T01A056 (2001)

  12. C.N. Lin, J.Y. Jang, A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins. Int. J. Heat Mass Transf. 45(18), 3839–3847 (2002). https://doi.org/10.1016/S0017-9310(02)00086-8

    Article  Google Scholar 

  13. B. Kundu, B. Maiti, P.K. Das, Performance analysis of plate fins circumscribing elliptic tubes. Heat Transf. Eng. 27(3), 86–94 (2006). https://doi.org/10.1080/01457630500458856

    Article  ADS  Google Scholar 

  14. B. Kundu, P.K. Das, Performance analysis and optimization of elliptic fins circumscribing a circular tube. Int. J. Heat Mass Transf. 50(1–2), 173–180 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.043

    Article  Google Scholar 

  15. P.K. Papadopoulos, P.M. Hatzikonstantinou, Numerical investigation of the thermally developing flow in a curved elliptic duct with internal fins. ASME J. Heat Transf. 129(6), 759–762 (2007). https://doi.org/10.1115/1.2717254

    Article  Google Scholar 

  16. P. Li, K.Y. Kim, Multiobjective optimization of staggered elliptical pin-fin arrays. Numer. Heat Transf. A Appl. 53(4), 418–431 (2008). https://doi.org/10.1080/10407780701632759

    Article  ADS  Google Scholar 

  17. H.R. Seyf, M. Layeghi, Numerical analysis of convective heat transfer from an elliptic pin fin heat sink with and without metal foam insert. ASME J. Heat Transf. 132(7), 071401 (2010). https://doi.org/10.1115/1.4000951

    Article  Google Scholar 

  18. L. Sun, C.L. Zhang, Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology. Int. J. Therm. Sci. 75, 45–53 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.07.021

    Article  Google Scholar 

  19. H. Nemati, S. Samivand, Simple correlation to evaluate efficiency of annular elliptical fin circumscribing circular tube. Arab. J. Sci. Eng. 39, 9181–9186 (2014). https://doi.org/10.1007/s13369-014-1474-z

    Article  Google Scholar 

  20. C. Demuth, S. Mishra, M.A. Mendes, S. Ray, D. Trimis, Application and accuracy issues of TRT lattice Boltzmann method for solving elliptic PDEs commonly encountered in heat transfer and fluid flow problems. Int. J. Therm. Sci. 100, 185–201 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.09.023

    Article  Google Scholar 

  21. H. Rajab, D. Yin, H. Ma, Numerical analysis of effects of nanofluid and angular orientation on heat transfer performance of an elliptical pin-fin heat sink. Heat Transf. Res. 48(2), 161–175 (2017). https://doi.org/10.1615/HeatTransRes.2016011084

    Article  Google Scholar 

  22. I.K. Adegun, T.S. Jolayemi, O.A. Olayemi, A.M. Adebisi, Numerical simulation of forced convective heat transfer in inclined elliptic ducts with multiple internal longitudinal fins. Alex. Eng. J. 57(4), 2485–2496 (2018). https://doi.org/10.1080/15502287.2020.1767724

    Article  Google Scholar 

  23. A.L. Razera, R.J.C. da Fonseca, L.A. Isoldi, E.D. dos Santos, L.A.O. Rocha, C. Biserni, Constructal design of a semi-elliptical fin inserted in a lid-driven square cavity with mixed convection. Int. J. Heat Mass Transf. 126, 81–94 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.157

    Article  Google Scholar 

  24. S.S. Hosseini, A. Ramiar, A.A. Ranjbar, Numerical investigation of natural convection solar air heater with different fins shape. Renew. Energy 117, 488–500 (2018). https://doi.org/10.1016/j.renene.2017.10.052

    Article  Google Scholar 

  25. D.U. Sarwe, V.S. Kulkarni, Thermal behaviour of annular hyperbolic fin with temperature dependent thermal conductivity by differential transformation method and Pade approximant. Phys. Scr. 96(10), 105213 (2021). https://doi.org/10.1088/1402-4896/ac0c94

    Article  ADS  Google Scholar 

  26. Y. Wang, W. Zhao, P. Wang, J. Jiang, X. Luo, Thermal performance of elliptical fin-and-tube heat exchangers with vortex generator under various inclination angles. J. Therm. Sci. 30, 257–270 (2021)

    Article  ADS  Google Scholar 

  27. M. Bahiraei, N. Mazaheri, M.R. Daneshyar, Employing elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspective. App. Therm. Eng. 183, 116159 (2021)

    Article  Google Scholar 

  28. Y.Q. Song, N. Izadpanahi, M.A. Fazilati, Y.P. Lv, D. Toghraie, Numerical analysis of flow and heat transfer in an elliptical duct fitted with two rotating twisted tapes. Int. Commun. Heat Mass Transf. 125, 105328 (2021)

    Article  Google Scholar 

  29. M. Bahiraei, N. Mazaheri, M.R. Daneshyar, A. Mwesigye, Two-phase simulation of irreversibilities for Ag-water nanofluid flow inside an elliptical pin-fin heat sink: Entropy generation and exergy considerations. Powder Technol. 409, 117723 (2022)

    Article  Google Scholar 

  30. L. Wang, Y. Lei, B. Du, Y. Li, J. Sun, Performance enhancement of a horizontal latent thermal energy storage unit with elliptical fins. Appl. Therm. Eng. 225, 120191 (2023)

    Article  Google Scholar 

  31. S. Singh, D. Kumar, K.N. Rai, Wavelet Collocation Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. Int. J. Eng. Technol. 2(4), 10–16 (2013)

    Google Scholar 

  32. S. Singh, D. Kumar, K. N. Rai, Convective-radiative fin with temperature dependent thermal conductivity, heat transfer coefficient and wavelength dependent surface emissivity. Propuls. Power Res. 3(4), (2014). https://doi.org/10.1016/j.jppr.2014.11.003

  33. S. Singh, S. Upadhyay, K. N. Rai, comparative analysis of power-law type fin problem using wavelet collocation and Galerkin methods. Int. J. Appl. Math. 3(4), 534 (2014). https://doi.org/10.14419/ijamr.v3i4.3137

  34. G. Oguntala, R. Abd-Alhameed, G. Sobamowo, I. Danjuma, Performance, thermal stability and optimum design analyses of rectangular fin with temperature-dependent thermal properties and internal heat generation. J. Appl. Comput. Mech. 49(1), 37-43 (2018). https://doi.org/10.22059/jcamech.2017.244988.203

  35. S. Upadhyay, K.N. Rai, A new iterative least square Chebyshev wavelet Galerkin FEM applied to dual phase lag model on microwave drying of foods. Int. J. Therm. Sci. 139, 217–231 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.01.035

    Article  Google Scholar 

  36. S. Upadhyay, V.K. Singh, K.N. Rai, Finite difference Legendre wavelet collocation method applied to the study of heat mass transfer during food drying. Heat Transf. Asian Res. 48(7), 3079–3100 (2019). https://doi.org/10.1002/htj.21531

    Article  Google Scholar 

  37. H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers. Int. J. Heat Mass Transf. 48(13), 2697–2707 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.035

    Article  Google Scholar 

  38. M. Razzaghi, S. Yousefi, Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53(3), 185–192 (2000). https://doi.org/10.1016/S0378-4754(00)00170-1

    Article  MathSciNet  Google Scholar 

  39. R.A. Horn, C.R. Johnson, Matrix analysis (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  40. H.V. Henderson, F. Pukelsheim, S.R. Searle, On the history of the Kronecker product. Linear Multilinear Algebra 14(2), 113–120 (1983). https://doi.org/10.1080/03081088308817548

    Article  MathSciNet  Google Scholar 

  41. C.G. KKhatri, C.R. Rao, Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya: Indian J. Stat. Series A 30(2), 167–180 (1968)

  42. A. Esteve, E. Boj, J. Fortiana, Interaction terms in distance-based regression. Commun. Stat. Theory Methods 38(19), 3498–3509 (2009). https://doi.org/10.1080/03610920802592860

    Article  MathSciNet  Google Scholar 

  43. H. Nemati, S. Samivand, Performance optimization of annular elliptical fin based on thermo-geometric parameters. Eng. J. 54(4), 1037–1042 (2015). https://doi.org/10.1016/j.aej.2015.09.016

    Article  Google Scholar 

  44. J.Y. Jang, M.C. Wu, W.J. Chang, Numerical and experimental studies of threedimensional plate-fin and tube heat exchangers. Int. J. Heat Mass Transf. 39(14), 3057–3066 (1996). https://doi.org/10.1016/0017-9310(95)00341-X

    Article  Google Scholar 

  45. X. Liu, J. Yu, G. Yan, A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches. Int. J. Heat Mass Transf. 100, 199–207 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.081

    Article  Google Scholar 

  46. M. Hatami, D.D. Ganji, Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. Int. J. Refrig. 40, 140–151 (2014). https://doi.org/10.1016/j.ijrefrig.2013.11.002

    Article  Google Scholar 

  47. A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins. Appl. Energy 137, 707–715 (2015). https://doi.org/10.1016/j.apenergy.2014.07.015

    Article  ADS  Google Scholar 

  48. R. Das, B. Kundu, Direct and inverse approaches for analysis and optimization of fins under sensible and latent heat load. Int. J. Heat Mass Transf. 124, 331–343 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.059

    Article  Google Scholar 

  49. S. Almsater, W. Saman, F. Bruno, Performance enhancement of high temperature latent heat thermal storage systems using heat pipes with and without fins for concentrating solar thermal power plants. Renew. Energy 89, 36–50 (2016). https://doi.org/10.1016/j.renene.2015.11.068

    Article  Google Scholar 

  50. V. Chaurasiya, D. Kumar, K.N. Rai, J. Singh, A computational solution of a phase-change material in the presence of convection under the most generalized boundary condition. Therm. Sci. Eng. Prog. 20, 100664 (2020). https://doi.org/10.1016/j.tsep.2020.100664

    Article  Google Scholar 

  51. H.T. Chen, Y.S. Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters. Int. J. Heat Mass Transf. 100, 320–331 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.039

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Eternal University Baru Sahib, India, for providing necessary facilities.

Funding

This research did not receive any grants from public, commercial, or non-profit organizations.

Author information

Authors and Affiliations

Authors

Contributions

All author made contributions to the design, coding, and writing of the manuscript.

Corresponding author

Correspondence to Priti Sharma.

Ethics declarations

Conflicts of interest

No conflicts of interest exist among the authors of this manuscript.

Ethics approval

The manuscript adheres to all ethical approval guidelines and policies.

Consent to participate

Electronic consent was obtained from all authors for their participation.

Consent for publication

The manuscript has not been previously published and is not under review by any other journal at present. All authors have provided consent for publication.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, S., Sharma, P., Singh, S. et al. A new iterative Broyden Legendre Wavelet Galerkin FEM applied to study heat transfer in two-dimensional elliptic and plate fins. Eur. Phys. J. Plus 138, 1154 (2023). https://doi.org/10.1140/epjp/s13360-023-04788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04788-3

Navigation