Skip to main content
Log in

Magnon-induced transparency and amplification in a hybrid cavity–magnon system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The magnon-induced transparency and magnon-induced slow light in a hybrid cavity–magnon system are analysed by using a set of experimentally realizable parameter. The cavity is driven by a strong microwave control field and a weaker probe field. The absorption and dispersion properties of the probe field are illustrated in detail. The transmission profile shows line shape structure. This line shape can be tuned via photon–magnon coupling rate, decay rate and applied magnetic field. The transmission profile also shows double-window magnon-induced transparency which supplies an additional degree of freedom of the present system. The phase of the transmitted field shows both anomalous and normal dispersion. The phase variation confirms that the group velocity shows both positive and negative values. The model system also shows slow light effect which can be controlled by applied magnetic field. This study may find applications in magnon-based quantum information processing and also the magnetic field-controlled low-power amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

There are no associated data for this manuscript.

References

  1. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  ADS  Google Scholar 

  2. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Magnon Spintronics. Nat. Phys. 11, 453–461 (2015)

    Article  Google Scholar 

  3. A. Hirohata et al., Review on spintronics: priciples and device applications. J. Magn. Magn. Mater. 509, 166711 (2020)

    Article  Google Scholar 

  4. A. Kamra, W. Belzig, A. Brataas, Magnon-squeezing as a niche of quantum magnonics. App. Phys. Lett. 117, 090501 (2020)

    Article  ADS  Google Scholar 

  5. P. Pirro, V.I. Vasyuchchka, A.A. Serga, B. Hillebrands, Advances in coherent magnonics. Nat. Rev. Mater. 6(12), 1114–1135 (2021)

    Article  ADS  Google Scholar 

  6. W. Zhang, T. Wang, X. Han, S. Zhang, H.-F. Wang, Quantum entanglement and one way steering in a cavity magnomechanical system via a squeezed vacuum field. Opt. Exp. 30, 10969 (2022)

    Article  Google Scholar 

  7. O.O. Soykal, M.E. Flatte, Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)

    Article  ADS  Google Scholar 

  8. H. Huebl et al., High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  9. X. Zhang, C.L. Zou, L. Jiang, H.X. Tang, Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  10. Y. Tabuchi et al., Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  11. Y. Tabuchi et al., Quantum information. Coherent coupling between ferromagnetic magnon and a superconducting qubit. Science 349, 405 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  12. Z.-X. Liu, H. Xiong, M.-Y. Wu, Y.-Q. Li, Absorption of magnons in dispersively coupled hybrid quantum systems. Phys. Rev. A 103, 063702 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  13. Z.-X. Liu, Y.-Q. Li, Optomagnonic frequency combs. Photon. Res. 2786, 10 (2022)

    Google Scholar 

  14. Z.-X. Liu, J. Peng, H. Xiong, Generation of magnonic frequency combs via a two-tone microwave drive. Phys. Rev. A 107, 053708 (2023)

    Article  ADS  Google Scholar 

  15. D.D. Stancil, A. Prabhakar, Spin waves theory and applications (Springer, NewYork, 2008)

    Google Scholar 

  16. Z.-X. Liu, B. Wang, H. Xiong, Y. Wu, Magnon-induced higher-order side band generation. Opt. Lett. 43, 3698 (2018)

    Article  ADS  Google Scholar 

  17. Z.-X. Liu, C. You, B. Wang, H. Xiong, Y. Wu, Phase mediated magnon chaos-order transition in cavity optomechanics. Opt. Lett. 44, 3 (2019)

    Google Scholar 

  18. G.-Q. Zhang, Z. Chen, W. Xiong, C.-H. Lam, J.Q. You, Parity-symmetry-breaking quantum phase transition via parametric drive in a cavity magnonic system. Phys. Rev. B 104, 064423 (2021)

    Article  ADS  Google Scholar 

  19. R.E. Slusher, H.M. Gibbs, Self-induced transparency in atomic Rubidium. Phys. Rev. A 5, 1634 (1972)

    Article  ADS  Google Scholar 

  20. B.P. Hou, S.J. Wang, W.L. Yu, W.L. Sun, Double electromagnetically induced two-photon transparency in a five-level atomic system. Phys. Lett. A 352, 462 (2006)

    Article  ADS  Google Scholar 

  21. S.J. Li et al., Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system. J. Phys. B At. Mol. Opt. Phys. 40, 3211 (2007)

    Article  ADS  Google Scholar 

  22. S. Weiss et al., Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  23. K. Mukherjee, P.C. Jana, Optically induced transparency in coupled micro-cavities: tunable Fano resonance. Eur. Phys. J. D 73, 264 (2019)

    Article  ADS  Google Scholar 

  24. X.-F. Zhang, C.-L. Zou, L. Jiang, H.X. Tang, Cavity magnomechanics. Sci. Adv. 2, e1501286 (2016)

    Article  ADS  Google Scholar 

  25. H.M.M. Alotaibi, B.C. Sanders, Double-double electromagnetically induced transparency with amplification. Phys. Rev. A 89, 021802(R) (2014)

    Article  ADS  Google Scholar 

  26. E.C. Diniz et al., Multiple transparency windows and Fano interferences induced by dipole-dipole couplings. Phys. Rev. A 97, 043848 (2018)

    Article  ADS  Google Scholar 

  27. X.Q. Luo et al., Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical and longitudinal phonons. Phys. Rev. A 84, 033803 (2011)

    Article  ADS  Google Scholar 

  28. J.T. Hill et al., Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  29. J.Q. Zhang et al., Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  30. A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris, Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)

    Article  ADS  Google Scholar 

  31. K. Mukherjee, P.C. Jana, Probe response of a two-mode cavity with χ2 nonlinearity, non-reciprocity and slow and fast light. App. Phys. B 127, 168 (2021)

    Article  ADS  Google Scholar 

  32. T. Baba, Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)

    Article  ADS  Google Scholar 

  33. T.F. Krauss, Why do we need slow light? Nat. Photonics 2, 448–450 (2008)

    Article  ADS  Google Scholar 

  34. L. Thevenaz, Slow and fast light in optical fibres. Nat. Photonics 2, 474–481 (2008)

    Article  ADS  Google Scholar 

  35. H.J. Kimble, The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  36. R.S. Tucker, P.C. Ku, C.J. Chang-Hasnian, Slow-light optical buffers: capabilities and fundamental limitations. J. Light Wave Tech. 23, 4046–4066 (2005)

    Article  ADS  Google Scholar 

  37. Y.-M. Huang, Z.-Q. Hua, Y.-Q. Yang, Y.-M. Zhao, Magnon-photon induced transparency in a cavity-quantum-electrodynamics system coupling yttrium-iron-garnet sphere. Result Phys. 15, 102516 (2019)

    Article  Google Scholar 

  38. B. Wang, Z.-X. Liu, C. Kong, H. Xiong, Y. Wu, Magnon induced transparency and amplification in PT-symmetric cavity-magnon system. Optic Expr. 26, 20248 (2018)

    Article  ADS  Google Scholar 

  39. Y.-L. Ren et al., Non-reciprocal optical transmission in cavity optomagnonics. Opt. Exp. 29, 41399 (2021)

    Article  Google Scholar 

  40. X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, H.X. Tang, Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)

    Article  ADS  Google Scholar 

  41. K. Mukherjee, P.C. Jana, Magnon bistability in a hybrid cavity-magnon system. J. Korea. Phys. Soc. 82, 356 (2023)

    ADS  Google Scholar 

  42. C. Kittle, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  43. T. Holstein, H. Primakoff, Field dependence of the intrinsic domain magnetisation of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  44. S. Blundell, Magnetism in condensed matter (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  45. Z. Zhang, M.O. Scully, G.S. Agarwal, Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Phys. Rev. Res. 1, 023021 (2019)

    Article  Google Scholar 

  46. J.A. Haigh et al., Selection rules for cavity enhanced Brillouin light scattering from magnetostatic modes. Phys. Rev. B 97, 214423 (2018)

    Article  ADS  Google Scholar 

  47. C. Kong et al., Magnetically controllable slow light based on magnetostrictive forces. Opt. Exp. 27, 5544 (2019)

    Article  Google Scholar 

  48. Y.-P. Wang et al., Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    Article  ADS  Google Scholar 

  49. Y. Wei et al., Quantitative analysis of magnon induced second-order sideband generation. IEEE Access 4, 2929912 (2016)

    Google Scholar 

  50. M. Wang et al., Magnon chaos in PT-aymmetric cavity Magnomechanics. IEEE Photonics J. 11, 5300108 (2019)

    Google Scholar 

  51. C. Zhao, Z. Yang, R. Peng, J. Yang, C. Li, L. Zhou, Dissipative-coupling-induced-transparency and higher-order sidebands with Kerr nonlinearity in a cavity-magnonics system. Phys. Rev. App. 18, 044074 (2022)

    Article  Google Scholar 

  52. M.-S. Ding, L. Zheng, C. Li, Phonon laser in a cavity magnomechanical system. Sci. Rep. 9, 15723 (2019)

    Article  ADS  Google Scholar 

  53. S. M. -L. Ricon et al. Measuring the magnon-photon coupling in shaped ferromagnets: tuning of the resonance frequency, arXiv: 2207.03829v1, Cond-mat.mes-hall (2022)

  54. V. Cherepanov, I. Kolokolov, V. L’vov, The Saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. 229, 81 (1993)

    Article  ADS  Google Scholar 

  55. M.O. Scully, M.S. Zubairy, Playing tricks with slow light. Science 301, 181 (2003)

    Article  Google Scholar 

  56. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 meters per second in an ultra cold atomic gas. Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  57. A.H. Safavi- Naeini et al., Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)

    Article  ADS  Google Scholar 

  58. Z.-X. Liu, H. Xiong, Y. Wu, Room-temperature slow light in a coupled cavity magnon-photon system. IEEE Access 7, 57047–57053 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Jana, P.C. Magnon-induced transparency and amplification in a hybrid cavity–magnon system. Eur. Phys. J. Plus 138, 1127 (2023). https://doi.org/10.1140/epjp/s13360-023-04783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04783-8

Navigation