Skip to main content
Log in

Dynamics of rogue waves and modulational instability with the Manakov system in a nonlinear electric transmission line with second couplings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we investigate rogue wave dynamics and modulational instability using the Manakov system in a nonlinear electrical transmission line with second couplings. Using semi-discrete approximation, we demonstrate how the dynamics of rogue waves in this type of transmission line can be governed by the Manakov system. To study the dynamics of rogue waves in this structure via this approximation, we used the parameters of this transmission line and derived new forms of propagating rogue wave solutions. The solutions obtained are presented as new rogue waves of types I and II. In this work, we show that the dynamics of different types of rogue waves in different types of nonlinear electrical transmission lines can be studied using the Manakov system. Indeed, with the choice of small values of inductance \((L_{3})\) in the two types of rogue waves, the effects of the second coupling are clearly visible during the formation of these waves, namely at the level shapes, hollows, and amplitude. Additionally, it can be observed that the dispersion capacity \((C_{S})\) also affects the shapes, troughs, peaks, and widths of these rogue waves as the troughs gradually disappear, and the peak widths decrease when the dispersion capacity \((C_{S})\) increases. Finally, concerning the modulational instability in this structure, the essential information that we can retain is that these second couplings \((L_{3})\) would impact the zones of instability, which could gradually disappear along this line. To avoid overload, we limited ourselves to these major effects. The results obtained by this Manakov system show not only its efficiency and robustness, but also its potential applicability to other types of useful nonlinear electrical transmission lines, and that these new forms of rogue waves do indeed exist in nonlinear electrical transmission lines with second couplings. This feature has not been sufficiently addressed in this type of nonlinear electrical transmission line and will be useful in many branches of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: There is no additional new data associated with this article.]

References

  1. S. Malik, H. Almusawa, S. Kumar, A.-M. Wazwaz, M.S. Osman, A (2+ 1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results Phys. 23, 104043 (2021)

    Article  Google Scholar 

  2. S. Djennadi, N. Shawagfeh, M.S. Osman, J.F. Gomez-Aguilar, O.A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 96(9), 094006 (2021)

    Article  ADS  Google Scholar 

  3. H.F. Ismael, H. Bulut, C. Park, M.S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2+ 1)-dimensional Date-Jimbo–Kashiwara–Miwa equation. Results Phys. 19, 103329 (2020)

    Article  Google Scholar 

  4. K.K. Ali, S. Abd El, A. Mohamed, E.M.H. Mohamed, B. Samet, S. Kumar, M.S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. Adv. Differ. Equ. 2020(1), 1–23 (2020)

    Article  MathSciNet  Google Scholar 

  5. S. Kumar, M. Niwas, M.S. Osman, M.A. Abdou, Abundant different types of exact soliton solution to the (4+ 1)-dimensional Fokas and (2+ 1)-dimensional breaking soliton equations. Commun. Theor. Phys. 73(10), 105007 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. R.U. Rahman, M.M.M. Qousini, A. Alshehri, S.M. Eldin, K. El-Rashidy, M.S. Osman, Evaluation of the performance of fractional evolution equations based on fractional operators and sensitivity assessment. Results Phys. 49, 106537 (2023)

    Article  Google Scholar 

  7. S. Qureshi, M.A. Akanbi, A.A. Shaikh, A.S. Wusu, O.M. Ogunlaran, W. Mahmoud, M.S. Osman, A new adaptive nonlinear numerical method for singular and stiff differential problems. Alex. Eng. J. 74, 585–597 (2023)

    Article  Google Scholar 

  8. F. Tasnim, M.A. Akbar, M.S. Osman, The extended direct algebraic method for extracting analytical solitons solutions to the cubic nonlinear Schrödinger equation involving beta derivatives in space and time. Fractal Fractional 7(6), 426 (2023)

    Article  Google Scholar 

  9. H.F. Ismael, T. Abdulkadir Sulaiman, H.R. Nabi, W. Mahmoud, M.S. Osman, Geometrical patterns of time variable Kadomtsev–Petviashvili (I) equation that models dynamics of waves in thin films with high surface tension. Nonlinear Dyn. 111(10), 9457–9466 (2023)

    Article  Google Scholar 

  10. A. Tripathy, S. Sahoo, H. Rezazadeh, Z.P. Izgi, M.S. Osman, Dynamics of damped and undamped wave natures in ferromagnetic materials. Optik 281, 170817 (2023)

    Article  ADS  Google Scholar 

  11. L. Akinyemi, A. Houwe, S. Abbagari, A.M. Wazwaz, H.M. Alshehri, M.S. Osman, Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik 288, 171202 (2023)

    Article  ADS  Google Scholar 

  12. L. Akinyemi, A. Houwe, S. Abbagari, A.M. Wazwaz, H.M. Alshehri, M.S. Osman, A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions. Commun. Theor. Phys. 2, 23 (2023)

    Google Scholar 

  13. M.A. Chowdhury, M.M. Miah, M.A. Iqbal, H.M. Alshehri, D. Baleanu, M.S. Osman, Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line. Eur. Phys. J. Plus 138(6), 1–11 (2023)

    Article  Google Scholar 

  14. L. Draper, Freak ocean. Mar (1965)

  15. P. Müller, C. Garrett, A. Osborne, Rogue waves. Oceanography 18(3), 66 (2005)

    Article  Google Scholar 

  16. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Article  ADS  Google Scholar 

  17. B. Frisquet, B. Kibler, G. Millot, Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3(4), 041032 (2013)

    Google Scholar 

  18. W.M. Moslem, R. Sabry, S.K. El-Labany, P.K. Shukla, Dust-acoustic rogue waves in a nonextensive plasma. Phys. Rev. E 84(6), 066402 (2011)

    Article  ADS  Google Scholar 

  19. L. Stenflo, M. Marklund, Rogue waves in the atmosphere. J. Plasma Phys. 76(3–4), 293–295 (2010)

    Article  ADS  Google Scholar 

  20. A.N. Ganshin, V.B. Efimov, G.V. Kolmakov, L.P. Mezhov-Deglin, P.V.E. McClintock, Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101(6), 065303 (2008)

    Article  ADS  Google Scholar 

  21. M. Shats, H. Punzmann, H. Xia, Capillary rogue waves. Phys. Rev. Lett. 104(10), 104503 (2010)

    Article  ADS  Google Scholar 

  22. K. Manikandan, P. Muruganandam, M. Senthilvelan, M. Lakshmanan, Manipulating matter rogue waves and breathers in Bose–Einstein condensates. Phys. Rev. E 90(6), 062905 (2014)

    Article  ADS  Google Scholar 

  23. Z.-Y. Yan, Financial rogue waves. Commun. Theor. Phys. 54(5), 947 (2010)

    Article  ADS  Google Scholar 

  24. E. Kengne, W.M. Liu, Transmission of rogue wave signals through a modified Noguchi electrical transmission network. Phys. Rev. E 99(6), 062222 (2019)

    Article  ADS  Google Scholar 

  25. F.I.I. Ndzana, G. Djelah, A. Mohamadou, Solitonic rogue waves dynamics in a nonlinear electrical transmission line with the next nearest neighbor couplings. Chin. J. Phys. 77, 1927–1945 (2022)

    Article  MathSciNet  Google Scholar 

  26. E. Kengne, W.M. Liu, L.Q. English, B.A. Malomed, Ginzburg–Landau models of nonlinear electric transmission networks. Phys. Rep. 982, 1–124 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  27. T.B. Benjamin, Instability of periodic wavetrains in nonlinear dispersive systems. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 299(1456), 59–76 (1967)

    ADS  Google Scholar 

  28. N.N. Akhmediev, V.I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69(2), 1089–1093 (1986)

    Article  Google Scholar 

  29. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80(2), 026601 (2009)

    Article  ADS  Google Scholar 

  30. A. Ankiewicz, J.M. Soto-Crespo, N. Akhmediev, Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81(4), 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Xu, J. He, L. Wang, The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44(30), 305203 (2011)

    Article  Google Scholar 

  32. U. Bandelow, N. Akhmediev, Sasa–Satsuma equation: soliton on a background and its limiting cases. Phys. Rev. E 86(2), 026606 (2012)

    Article  ADS  Google Scholar 

  33. L. Liu, B. Tian, Y.-Q. Yuan, Z. Du, Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys. Rev. E 97(5), 052217 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. X. Wang, B. Yang, Y. Chen, Y. Yang, Higher-order rogue wave solutions of the Kundu–Eckhaus equation. Phys. Scr. 89(9), 095210 (2014)

    Article  ADS  Google Scholar 

  35. L.-C. Zhao, C. Liu, Z.-Y. Yang, The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers. Commun. Nonlinear Sci. Numer. Simul. 20(1), 9–13 (2015)

    Article  ADS  Google Scholar 

  36. P. Gaillard, Families of quasi-rational solutions of the NLS equation and multi-rogue waves. J. Phys. A Math. Theor. 44(43), 435204 (2011)

    Article  ADS  Google Scholar 

  37. V.B. Matveev, M.A. Salle et al., Darboux Transformations and Solitons (Springer, Berlin, 1991), p.17

    Book  Google Scholar 

  38. N.N. Akhmediev, N.V. Mitzkevich, Extremely high degree of N-soliton pulse compression in an optical fiber. IEEE J. Quant. Electron. 27(3), 849–857 (1991)

    Article  ADS  Google Scholar 

  39. B. Yang, W.-G. Zhang, H.-Q. Zhang, S.-B. Pei, Generalized Darboux transformation and rogue wave solutions for the higher-order dispersive nonlinear Schrödinger equation. Phys. Scr. 88(6), 065004 (2013)

    Article  ADS  Google Scholar 

  40. J.S. He, H.R. Zhang, L.H. Wang, K. Porsezian, A.S. Fokas, Generating mechanism for higher-order rogue waves. Phys. Rev. E 87(5), 052914 (2013)

    Article  ADS  Google Scholar 

  41. E. Kengne, W.M. Liu, Engineering rogue waves with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network. Phys. Rev. E 102(1), 012203 (2020)

    Article  ADS  Google Scholar 

  42. D. Ahmadou, H. Alphonse, M. Justin, G. Betchewe, D.Y. Serge, K.T. Crepin, M. Inc, New coupled rogue waves propagating backward and forward and modulation instability in a composite nonlinear right-and left-handed transmission line. Eur. Phys. J. Plus 136, 1–26 (2021)

    Article  Google Scholar 

  43. G. Djelah, F. Ndzana, S. Abdoulkary, A. Mohamadou, First and second order rogue waves dynamics in a nonlinear electrical transmission line with the next nearest neighbor couplings. Chaos Solitons Fractals 167, 113087 (2023)

    Article  MathSciNet  Google Scholar 

  44. G.P. Veldes, J. Cuevas, P.G. Kevrekidis, D.J. Frantzeskakis, Quasidiscrete microwave solitons in a split-ring-resonator-based left-handed coplanar waveguide. Phys. Rev. E 83(4), 046608 (2011)

    Article  ADS  Google Scholar 

  45. M. Remoissenet, M. Remoissenet, Solitons in nonlinear transmission lines. Waves Called Solitons Concepts Exp. 8, 37–64 (1996)

    Article  Google Scholar 

  46. E. Kengne, A. Lakhssassi, W.M. Liu, Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line. Phys. Rev. E 91(6), 062915 (2015)

    Article  ADS  Google Scholar 

  47. T. Taniuti, N. Yajima, Perturbation method for a nonlinear wave modulation I. J. Math. Phys. 10(8), 1369–1372 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.I. Dyachenko, V.E. Zakharov, Modulation instability of Stokes wave\(\rightarrow \) freak wave. J. Exp. Theor. Phys. Lett. 81(6), 255–259 (2005)

    Article  Google Scholar 

  49. J.K. Duan, B.Y. Long, Q. Wei, M.H. Fan, Super rogue waves in coupled electric transmission lines. Indian J. Phys. 94, 879–883 (2020)

    Article  ADS  Google Scholar 

  50. G.P. Veldes, J. Cuevas, P.G. Kevrekidis, D.J. Frantzeskakis, Coupled backward-and forward-propagating solitons in a composite right-and left-handed transmission line. Phys. Rev. E 88(1), 013203 (2013)

    Article  ADS  Google Scholar 

  51. D. Wen-Shan, H. Xue-Ren, S. Yu-Ren, L. Ke-Pu, S. Jian-An, Weakly two-dimensional solitary waves on coupled nonlinear transmission lines. Chin. Phys. Lett. 19(9), 1231 (2002)

    Article  ADS  Google Scholar 

  52. W.-S. Duan, Nonlinear waves propagating in the electrical transmission line. Europhys. Lett. 66(2), 192 (2004)

    Article  ADS  Google Scholar 

  53. J.K. Duan, Y.L. Bai, Rogue wave in coupled electric transmission line. Indian J. Phys. 92(3), 369–375 (2018)

    Article  ADS  Google Scholar 

  54. K. Manikandan, M. Senthilvelan, R.A. Kraenkel, On the characterization of vector rogue waves in two-dimensional two coupled nonlinear Schrödinger equations with distributed coefficients. Eur. Phys. J. B 89(10), 1–11 (2016)

    Article  Google Scholar 

  55. L. Wang, J. He, H. Xu, J. Wang, K. Porsezian, Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95(4), 042217 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  56. Z. Rahman, M. Zulfikar Ali, H.-O. Roshid, Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method. Chin. Phys. B 30(5), 050202 (2021)

    Article  ADS  Google Scholar 

  57. K. Tai, A. Hasegawa, A. Tomita, Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56(2), 135 (1986)

    Article  ADS  Google Scholar 

  58. T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water. J. Fluid Mech. 27(3), 417–430 (1967)

    Article  ADS  Google Scholar 

  59. D.H. Peregrine, Interaction of water waves and currents. Adv. Appl. Mech. 16, 9–117 (1976)

    Article  Google Scholar 

  60. L. Salasnich, A. Parola, L. Reatto, Modulational instability and complex dynamics of confined matter-wave solitons. Phys. Rev. Lett. 91(8), 080405 (2003)

    Article  ADS  Google Scholar 

  61. T. Taniuti, H. Washimi, Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21(4), 209 (1968)

    Article  ADS  Google Scholar 

  62. S. Watanabe, Self-modulation of a nonlinear ion wave packet. J. Plasma Phys. 17(3), 487–501 (1977)

    Article  ADS  Google Scholar 

  63. H. Bailung, Y. Nakamura, Observation of modulational instability in a multi-component plasma with negative ions. J. Plasma Phys. 50(2), 231–242 (1993)

    Article  ADS  Google Scholar 

  64. L.-C. Zhao, L. Ling, Quantitative relations between modulational instability and several well-known nonlinear excitations. JOSA B 33(5), 850–856 (2016)

    Article  ADS  Google Scholar 

  65. L.-C. Zhao, G.-G. Xin, Z.-Y. Yang, Rogue-wave pattern transition induced by relative frequency. Phys. Rev. E 90(2), 022918 (2014)

    Article  ADS  Google Scholar 

  66. M.S. Ullah, M. Mostafa, M. Zulfikar Ali, H.O. Roshid, M. Akter, Soliton solutions for the Zoomeron model applying three analytical techniques. Plos One 18(7), e0283594 (2023)

    Article  Google Scholar 

  67. M.S. Ullah, D. Baleanu, M. Zulfikar Ali et al., Novel dynamics of the Zoomeron model via different analytical methods. Chaos Solitons Fractals 174, 113856 (2023)

    Article  MathSciNet  Google Scholar 

  68. E. Kengne, W.M. Liu, Solitonlike pulses along a modified Noguchi nonlinear electrical network with second-neighbor interactions: analytical studies. Phys. Rev. E 97(5), 052205 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  69. X.-L. Chen, S. Abdoulkary, P.G. Kevrekidis, L.Q. English, Resonant localized modes in electrical lattices with second-neighbor coupling. Phys. Rev. E 98(5), 052201 (2018)

    Article  ADS  Google Scholar 

  70. G. Dematteis, T. Grafke, M. Onorato, E. Vanden-Eijnden, Experimental evidence of hydrodynamic instantons: the universal route to rogue waves. Phys. Rev. X 9(4), 041057 (2019)

    Google Scholar 

  71. A. Tikan, F. Bonnefoy, G. Roberti, G. El, A. Tovbis, G. Ducrozet, A. Cazaubiel, G. Prabhudesai, G. Michel, Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering. Phys. Rev. Fluids 7(5), 054401 (2022)

    Article  ADS  Google Scholar 

  72. A. Romero-Ros, G.C. Katsimiga, S.I. Mistakidis, B. Prinari, G. Biondini, P. Schmelcher, P.G. Kevrekidis, Theoretical and numerical evidence for the potential realization of the Peregrine soliton in repulsive two-component Bose-Einstein condensates. Phys. Rev. A 105(5), 053306 (2022)

    Article  ADS  Google Scholar 

  73. S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler, M.G. Clerc, Turbulence-induced rogue waves in Kerr resonators. Phys. Rev. X 9(1), 011054 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djidere Ahmadou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadou, D., Alphonse, H., Justin, M. et al. Dynamics of rogue waves and modulational instability with the Manakov system in a nonlinear electric transmission line with second couplings. Eur. Phys. J. Plus 138, 1113 (2023). https://doi.org/10.1140/epjp/s13360-023-04773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04773-w

Navigation