Skip to main content
Log in

Influence of quasicrystalline fillers on the microstructural, thermal, and band gap properties of polyamide 6-based coatings with pure Al–Cu–Fe and recycled Al–Cu–Fe quasicrystals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Composite coatings of polyamide 6 (PA6) and pure quasicrystals (Al–Cu–Fe) and recycled quasicrystals (AlRec.–Cu–Fe) were developed using a solution polymer method, and the influence of these fillers on the microstructural, morphological, and electrical characteristics of the composites was analyzed. The composite coatings were produced via spin coating with a volumetric fraction of 0–11% of quasicrystalline fillers. Changes in the sample morphology were observed, inhibiting the crystalline γ form of polyamide 6 and reducing the degree of crystallinity from 35 to 10%, with a variation of \(\pm\) 1, with the addition of recycled quasicrystals (AlRec.–Cu–Fe). Furthermore, the AlRec.–Cu–Fe-based composite coatings exhibited band gap values (Eg) of approximately 1–1.3 eV, which falls within the semiconductor Eg range. The composites with AlRec.–Cu–Fe displayed electrical resistance ranging from 0.01 to 0.07 Ω, which is lower than the pure Al–Cu–Fe quasicrystal samples. Additionally, the electrical conductivity ranged from 1926.8 to 550.5 (Ω m)−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the paper, the Mater. Res. Express (https://doi.org/10.1088/2053-1591/aca37b).

References

  1. L.R.F. Figueiredo et al., Quasicrystalline metal powder: a potential filler for UHMWPE composites. Mater. Res. (2022). https://doi.org/10.1590/1980-5373-MR-2021-0379

    Article  Google Scholar 

  2. D. Shechtman et al., Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951 (1984)

    Article  ADS  Google Scholar 

  3. T.P.D.S. Barros et al., Study of the surface properties of the epoxy/quasicrystal composite. J. Market. Res. (2019). https://doi.org/10.1016/j.jmrt.2018.04.015

    Article  Google Scholar 

  4. B.C. Anderson et al., Al–Cu–Fe quasicrystal/ultra-high molecular weight polyethylene composites as biomaterials for acetabular cup prosthetic. Biomaterials 23, 1761–1768 (2002). https://doi.org/10.1016/s0142-9612(01)00301-5

    Article  Google Scholar 

  5. J.D. Altidis, S.J.G. Lima, R.M. Gomes, E.M. Sampaio, S.M. Torres, S. De Barros, Adhesion tests using epoxy quasicrystal composites. J. Adhes. Sci. Technol. 26(10–11), 1443–1451 (2012)

    Article  Google Scholar 

  6. E.H. Saarivirta, Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: a review. J. Alloys Compd. (2004). https://doi.org/10.1016/S0925-8388(03)00445-6

    Article  Google Scholar 

  7. E. Huttunen-Saarivirta, T. Tiainen, Corrosion behaviour of Al–Cu–Fe alloys containing a quasicrystalline phase. Mater. Chem. Phys. 85(2–3), 383–395 (2004)

    Article  Google Scholar 

  8. T. Ferreira et al., Strong and ductile recycled Al-7Si-3Cu-1Fe alloy: controlling the morphology of quasicrystal approximant α-phase by Mn and V addition. J. Alloys Compd. 888, 161508 (2021). https://doi.org/10.1016/j.jallcom.2021.161508

    Article  Google Scholar 

  9. D.R. Groot, P.C. Pistorius, Can we decrease the ecological footprint of base metal production by recycling? J. South. Afr. Ins. Min. Metall. 108(3), 161–169 (2008)

    Google Scholar 

  10. A.P. De Sousa et al., Development and surface properties of polyamide 6 and quasicrystal composite coatings recycled via spin coating technique. Mater. Res. Express (2022). https://doi.org/10.1088/2053-1591/aca37b

    Article  Google Scholar 

  11. L.H. Chou, Y. Na, C.H. Park, M.S. Park, I. Osaka, F.S. Kim, C.L. Liu, Semiconducting small molecule/polymer blends for organic transistors. Polymer 191, 122208 (2020)

    Article  Google Scholar 

  12. S.M. Rezende, Materiais e dispositivos eletrônicos, 3th Ed. Livraria da Física, São Paulo (2014)

  13. B. Özen et al., Engineering polymers with improved charge transport properties from bithiophene-containing polyamides. J. Mater. Chem. C 8(18), 6281–6292 (2020)

    Article  MathSciNet  Google Scholar 

  14. Y. Iwasaki, K. Kitahara, K. Kimura, Band engineering in Al-TM (TM=Rh, Ir) quasicrystalline approximants via alloying and enhancement of thermoelectric properties. J. Alloys Compd. 851, 156904 (2021)

    Article  Google Scholar 

  15. K. Kirihara, K. Kimura, Covalency, semiconductor-like and thermoelectric properties of Al-based quasicrystals: icosahedral cluster solids. Sci. Technol. Adv. Mater. (2000). https://doi.org/10.1016/S1468-6996(00)00021-8

    Article  Google Scholar 

  16. F.A. Sabah, I.A. Razak, E.A. Kabaa, M.F. Zaini, A.F. Omar, Characterization of hybrid organic/inorganic semiconductor materials for potential light emitting applications. Opt. Mater. 107, 110117 (2020)

    Article  Google Scholar 

  17. C. Zhou et al., Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications. Appl. Catal. B 238(June), 6–18 (2018)

    Article  Google Scholar 

  18. G. Cios, G. Nolze, A. Winkelmann, T. Tokarski, R. Hielscher, R. Strzałka, P. Bała, Approximant-based orientation determination of quasicrystals using electron backscatter diffraction. Ultramicroscopy 218, 113093 (2020)

    Article  Google Scholar 

  19. M. Millogo et al., Combustion properties of titanium alloy powder in ALM processes: Ti6Al4V. J. Loss Prev. Process Ind. 56, 254–261 (2018)

    Article  Google Scholar 

  20. A. Nalbant et al., Producing CuO and ZnO composite thin films using the spin coating method on microscope glasses. Mater. Sci. Eng. B 178(6), 368–374 (2013)

    Article  Google Scholar 

  21. Oliveira et al., Nanocompósitos de Poliamida 6 e Argila Organofílica: Estudo da Cristalinidade e Propriedades Mecânicas. Polímeros 21(1), 78–82 (2011)

    Article  Google Scholar 

  22. M.K. Meena et al., Superhydrophobic polymer composite coating on glass via spin coating technique. Colloid Polym. Sci. 297(11), 1499–1505 (2019)

    Article  Google Scholar 

  23. M.A. Herrera et al., Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohyd. Polym. 112, 494–501 (2014)

    Article  Google Scholar 

  24. T.D. Fornes, P. Donald, Crystallization behavior of nylon 6 nanocomposites. Polymer (2003). https://doi.org/10.1016/S0032-3861(03)00344-6

    Article  Google Scholar 

  25. M.O. Melquiades et al., Structural, thermal, vibrational, and optical characterization of Sn–S–Se dichalcogenide system synthesized by high-energy ball milling. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2021.110203

    Article  Google Scholar 

  26. C.J.R. Verbeek, The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites. Mater. Lett. 57(13–14), 1919–1924 (2003)

    Article  Google Scholar 

  27. M. Amini et al., Effect of milling time on XRD phases and microstructure of a novel Al67Cu20Fe10B3 quasicrystalline alloy. Mater. Res. Express 7(6), 065011 (2020)

    Article  ADS  Google Scholar 

  28. S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress Polym Sci 28(11), 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  29. X.Y. Zhao, B.Z. Zhang, The effects of annealing (solid and melt) on the time evolution of the polymorphic structure of polyamide 6. J. Appl. Polym. Sci (2010). https://doi.org/10.1002/app.31190

    Article  Google Scholar 

  30. F.L. Neto and L.C. Pardini, Compósitos estruturais: Ciência e Tecnologia. (Editora Blucher, 2016). E-book. ISBN 9788521210795. https://integrada.minhabiblioteca.com.br/#/books/9788521210795/. Acesso em 27 setembro de 2022

  31. D.M. Lincoln et al., Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocompósitos. Polymer 42, 1621–1631 (2001)

    Article  Google Scholar 

  32. D. Shechtman, Foreword: focus on complex metallic phases. Sci. Technol. Adv. Mater. 15(5), 050302 (2014)

    Article  Google Scholar 

  33. B. G. Yacobi, Types of Semiconductors. In: Semiconductor Materials Microdevices, Springer, (2003). https://doi.org/10.1007/0-306-47942-7_6

  34. R. Bueno et al., Semicondutores heteroestruturados: uma abordagem sobre os principais desafios para a obtenção e aplicação em processos fotoquímicos ambientais e energéticos. Quim. Nova 42(6), 661–675 (2019)

    Google Scholar 

  35. H. Colak, O. Türkoğlu, Effect of doping and high-temperature annealing on the structural and electrical properties of Zn1–X NiXO (0≤ X≤ 0.15) powders. J. Mater. Sci. Technol. 27(10), 944–950 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the Materials and Biosystems Laboratory (LAMAB-UFPB) and especially to Professor Eliton Souto de Medeiros, his contribution was fundamental to the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia P. Sousa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, A.P., Lima, W.M.P.A., Torquato, R.A. et al. Influence of quasicrystalline fillers on the microstructural, thermal, and band gap properties of polyamide 6-based coatings with pure Al–Cu–Fe and recycled Al–Cu–Fe quasicrystals. Eur. Phys. J. Plus 138, 1126 (2023). https://doi.org/10.1140/epjp/s13360-023-04769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04769-6

Navigation