Skip to main content
Log in

Controlled dynamic variation of interfacial electronic and optical properties of sodium-intercalated silicene/hBN heterostructure

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Dynamical variation of the properties of materials in a controllable and reversible manner is highly desirable for obtaining next-generation multifunctional materials. This work involves modulation of the interfacial electronic and optical properties of Na-intercalated two-dimensional (2D) van der Waals heterostructure (vdW-HS) consisting of puckered silicene and hexagonal boron nitride (hBN) through layer-sliding. A nifty modeling of silicene/hBN vdW-HS significantly minimized the lattice mismatch between silicene and hBN from 35.32 to 2.97%. Afterwards, most stable site for Na at the interface is screened out. To demonstrate the variation of properties dynamically, silicene layer is slided over hBN in regular intervals, and various parametric quantities relating to physical properties are calculated with PW-LDA and PBE-GGA functionals repetitively and compared. To check the stability of vdW-HS along the sliding pathway relative total energies, vdW interactions and vdW-gaps are computed. Planar average charge density difference (∆ρ), charge transfer (∆Q), and interface dipole moment (∆μ) are also calculated and varied to study the interfacial electronic properties due to layer-sliding and intercalation. It is found that ∆Q at the interface for fully vdW-HS is 15% and 12% higher than the un-slided vdW-HS with PW-LDA and PBE-GGA, respectively. A number of optical properties relating to the intercalated silicene/hBN vdW-HS such as real \({[\varepsilon }_{1}\left(\omega \right)]\) and imaginary \({[\varepsilon }_{2}\left(\omega \right)]\) parts of complex dielectric function, electron energy loss function \([L\left(\omega \right)]\), diagonal components of dielectric tensor [ε(\(i\omega )]\), and optical joint density of states \([J\left(\upomega \right)]\) have been discussed in detail. The maximum absorption takes place for in-plane \({\varepsilon }_{2}\left(\omega \right)\) at around 3.63/3.71, 3.63/3.96, and 3.68/3.68 eV with PW-LDA/PBE-GGA for un-slided, half slided, and fully slided silicene/hBN vdW-HS, respectively. Polarization and energy losses are reduced whereas optical absorption is increased by 13.69 and 16.23% in the case of PW-LDA and PBE-GGA for fully slided vdW-HS as compared with the un-slided vdW-HS. Proposed layer-sliding method can be developed as a general approach for real-time fine-tuning of the properties of layered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. A.C. Neto, F. Guinea, N.M. Peres, Drawing conclusions from graphene. Phys. World 19(11), 33 (2006)

    Article  Google Scholar 

  2. M. Ali, M. Yousaf, J. Munir, Achieving controllable multifunctionality through layer sliding. J. Mol. Graph. Model, 108638 (2023)

  3. A.C. Ferrari et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)

    Article  ADS  Google Scholar 

  4. F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5(1), 4477 (2014)

    Article  ADS  Google Scholar 

  5. M.A. Lukowski et al., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013)

    Article  Google Scholar 

  6. M. Jafarpour et al., Functional ink formulation for printing and coating of graphene and other 2D materials: challenges and solutions. Small Sci. 2(11), 2200040 (2022)

    Article  Google Scholar 

  7. F. Schedin et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    Article  ADS  Google Scholar 

  8. Y. Chen et al., Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 44(9), 2681–2701 (2015)

    Article  Google Scholar 

  9. Z. Liu et al., Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4(1), 2541 (2013)

    Article  ADS  Google Scholar 

  10. Y. Zhu et al., Two-dimensional materials for light emitting applications: achievement, challenge and future perspectives. Nano Res. 14, 1912–1936 (2021)

    Article  Google Scholar 

  11. M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015)

    Article  ADS  Google Scholar 

  12. J. Kim et al., 2D materials for skin-mountable electronic devices. Adv. Mater. 33(47), 2005858 (2021)

    Article  Google Scholar 

  13. M. Hempel et al., A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)

    Article  ADS  Google Scholar 

  14. S. Montes, H. Maleki, Aerogels and their applications, in Colloidal Metal Oxide Nanoparticles (Elsevier, 2020), pp. 337–399

  15. H.Q. Ta et al., Graphene-like ZnO: a mini review. Crystals 6(8), 100 (2016)

    Article  Google Scholar 

  16. M. Ali et al., Structural, optoelectronic and thermodynamical insights into 2H-ZrO2: A DFT investigation. Inorg. Chem. Commun, 111891 (2023)

  17. K.-K. Liu et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012)

    Article  ADS  Google Scholar 

  18. M. Chhowalla et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)

    Article  Google Scholar 

  19. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  ADS  Google Scholar 

  20. C.H. Chen et al., Electrical probing of submicroliter liquid using graphene strip transistors built on a nanopipette. Small 8(1), 43–46 (2012)

    Article  MathSciNet  Google Scholar 

  21. K.K. Kim et al., Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12(1), 161–166 (2012)

    Article  ADS  Google Scholar 

  22. Y. Shi et al., Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10(10), 4134–4139 (2010)

    Article  ADS  Google Scholar 

  23. Y. Zhang et al., Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4(17), 5300–5303 (2012)

    Article  ADS  Google Scholar 

  24. A. Bafekry, S. Farjami Shayesteh, F.M. Peeters, C3N monolayer: exploring the emerging of novel electronic and magnetic properties with adatom adsorption, functionalizations, electric field, charging, and strain. J. Phys. Chem. C 123(19), 12485–12499 (2019)

    Article  Google Scholar 

  25. E.S. Reich, Phosphorene excites materials scientists. Nature 506(7486), 19 (2014)

    Article  ADS  Google Scholar 

  26. A. Carvalho et al., Phosphorene: from theory to applications. Nat. Rev. Mater. 1(11), 1–16 (2016)

    Article  Google Scholar 

  27. M. Ali et al., Layer-sliding-mediated controllable synthetic strategy for the preparation of multifunctional materials. Mater. Today Commun. 107022 (2023)

  28. M.W. Younis et al., Layer-sliding-mediated reversible tuning of interfacial electronic and optical properties of intercalated ZrO2/MoS2 van der Waals heterostructure. J. Mater. Res. (2023)

  29. M.W. Younis et al., Controlled dynamic variation of interfacial electronic and optical properties of lithium intercalated ZrO2/MoS2 vdW heterostructure. J. Mol. Graph. Model. 108694 (2023)

  30. W. Huang et al., 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm 18(22), 3968–3984 (2016)

    Article  Google Scholar 

  31. M. Zhou et al., Multiband k· p theory of monolayer X Se (X= In, Ga). Phys. Rev. B 96(15), 155430 (2017)

    Article  ADS  Google Scholar 

  32. P. Chen et al., Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano 6(1), 712–719 (2012)

    Article  MathSciNet  Google Scholar 

  33. W. Geng et al., Influence of interface structure on the properties of ZnO/graphene composites: a theoretical study by density functional theory calculations. J. Phys. Chem. C 117(20), 10536–10544 (2013)

    Article  Google Scholar 

  34. Y. Ma et al., Graphene-diamond interface: gap opening and electronic spin injection. Phys. Rev. B 85(23), 235448 (2012)

    Article  ADS  Google Scholar 

  35. Y. Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)

    Article  ADS  Google Scholar 

  36. Q. Peng et al., Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  37. Y. Zhang et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9(2), 111–115 (2014)

    Article  ADS  Google Scholar 

  38. K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  39. Y. Liu et al., Probing interlayer interactions in WSe 2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys. 14, 1–8 (2019)

    Article  Google Scholar 

  40. M. Tan, L. Zhang, W. Liang, Theoretical study on intrinsic structures and properties of vdW heterostructures of transition metal dichalcogenides (WX2) and effect of strains. Acta Phys. Chim. Sin. 35(4), 385–393 (2019)

    Article  Google Scholar 

  41. A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6(11), 5820–5825 (2014)

    Article  ADS  Google Scholar 

  42. W. Bao et al., Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5(1), 4224 (2014)

    Article  ADS  Google Scholar 

  43. Y. Yu et al., Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10(3), 270–276 (2015)

    Article  ADS  Google Scholar 

  44. N. Drummond, V. Zolyomi, V. Fal’Ko, Electrically tunable band gap in silicene. Phys. Rev. B 85(7), 075423 (2012)

    Article  ADS  Google Scholar 

  45. N. Marom et al., Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett. 105(4), 046801 (2010)

    Article  ADS  Google Scholar 

  46. S. Bhattacharyya, A.K. Singh, Lifshitz transition and modulation of electronic and transport properties of bilayer graphene by sliding and applied normal compressive strain. Carbon 99, 432–438 (2016)

    Article  Google Scholar 

  47. H.-Y. Chiu et al., Controllable pn junction formation in monolayer graphene using electrostatic substrate engineering. Nano Lett. 10(11), 4634–4639 (2010)

    Article  ADS  Google Scholar 

  48. R. Decker et al., Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11(6), 2291–2295 (2011)

    Article  ADS  Google Scholar 

  49. C.R. Dean et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    Article  ADS  Google Scholar 

  50. M. Ishigami et al., Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)

    Article  ADS  Google Scholar 

  51. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  ADS  Google Scholar 

  52. I. Meric et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3(11), 654–659 (2008)

    Article  ADS  Google Scholar 

  53. S. Trivedi, A. Srivastava, R. Kurchania, Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. J. Comput. Theor. Nanosci. 11(3), 781–788 (2014)

    Article  Google Scholar 

  54. Z. Ni et al., Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012)

    Article  ADS  Google Scholar 

  55. C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107(7), 076802 (2011)

    Article  ADS  Google Scholar 

  56. S.N. Shirodkar, E. Kaxiras, Li intercalation at graphene/hexagonal boron nitride interfaces. Phys. Rev. B 93(24), 245438 (2016)

    Article  ADS  Google Scholar 

  57. L. Peng et al., Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 6(11), 1600025 (2016)

    Article  MathSciNet  Google Scholar 

  58. J. Luo et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017)

    Article  Google Scholar 

  59. D. Cakir, C. Sevik. Tailoring storage capacity and ion kinetics in Ti2CO2/graphene heterostructures by functionalization of graphene. in APS March Meeting Abstracts (2019).

  60. Y. Shao et al., H-/dT-MoS2-on-MXene heterostructures as promising 2D anode materials for lithium-ion batteries: insights from first principles. Adv. Theory Simul. 2(8), 1900045 (2019)

    Article  Google Scholar 

  61. N. Yabuuchi et al., P2-type Na x [Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11(6), 512–517 (2012)

    Article  ADS  Google Scholar 

  62. J.R. Dahn et al., Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–593 (1995)

    Article  ADS  Google Scholar 

  63. C. Luo et al., Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power. Sources 250, 372–378 (2014)

    Article  ADS  Google Scholar 

  64. N. Yabuuchi et al., Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. J. Electrochem. Soc. 160(5), A3131 (2013)

    Article  Google Scholar 

  65. M. Dahbi, S. Komaba, Fluorine chemistry for negative electrode in sodium and lithium ion batteries, in Advanced Fluoride-Based Materials for Energy Conversion. (Elsevier, 2015), pp.387–414

    Chapter  Google Scholar 

  66. J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Func. Mater. 28(43), 1802938 (2018)

    Article  Google Scholar 

  67. M.H. Han et al., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015)

    Article  Google Scholar 

  68. J.L. Kaufman et al., Understanding intercalation compounds for sodium-ion batteries and beyond. Philos. Trans. R. Soc. A 377(2152), 20190020 (2019)

    Article  ADS  Google Scholar 

  69. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  70. S. Scandolo et al., First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Zeitschrift für Kristallographie Crystal. Mater. 220(5–6), 574–579 (2005)

    Article  ADS  Google Scholar 

  71. L. Malakkal et al., An interface to Quantum ESPRESSO, in Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015) (2015, Springer).

  72. P. Giannozzi et al., Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152(15), 154105 (2020)

    Article  ADS  Google Scholar 

  73. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993 (1991)

    Article  ADS  Google Scholar 

  74. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 43(11), 8861 (1991)

    Article  ADS  Google Scholar 

  75. G. Kerker, Non-singular atomic pseudopotentials for solid state applications. J. Phys. C Solid State Phys. 13(9), L189 (1980)

    Article  ADS  Google Scholar 

  76. D. Hamann, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43(20), 1494 (1979)

    Article  ADS  Google Scholar 

  77. B.G. Pfrommer et al., Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131(1), 233–240 (1997)

    Article  ADS  Google Scholar 

  78. M.S. Dresselhaus, Intercalation in layered materials. MRS Bull. 12, 24–28 (1987)

    Article  Google Scholar 

  79. Q. Fang et al., van der Waals graphene/MoS2 heterostructures: tuning the electronic properties and Schottky barrier by applying a biaxial strain. Mater. Adv. 3(1), 624–631 (2022)

    Article  Google Scholar 

  80. S. Clark et al., Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun. 154, 15–18 (2013)

    Article  ADS  Google Scholar 

  81. S. Tongay et al., Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14(6), 3185–3190 (2014)

    Article  ADS  Google Scholar 

  82. M. Dienwiebel et al., Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)

    Article  ADS  Google Scholar 

  83. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  84. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)

    Article  ADS  Google Scholar 

  85. J.P. Perdew et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992)

    Article  ADS  Google Scholar 

  86. D.C. Langreth, M. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28(4), 1809 (1983)

    Article  ADS  Google Scholar 

  87. M. Mubashir et al., Efficient hydrogen storage in LiMgF3: a first principle study. Int. J. Hydrogen. Energy (2023)

  88. M. Ali et al., CO Adsorption on two-dimensional 2H-ZrO2 and its effect on the interfacial electronic properties: implications for sensing. Phys. Scr. (2023)

  89. M. Younis et al., Effect of layer sliding on the electronic and optical properties of corrugated silicene/indium selenide van der Waals heterostructure. J. Optoelectron. Adv. Mater. 23(May–June 2021), 222–228 (2021)

    Google Scholar 

  90. M. Ali et al., An accurate prediction of electronic structure, mechanical stability and optical response of BaCuF3 fluoroperovskite for solar cell application. Sol. Energy 267, 112199 (2024)

    Article  ADS  Google Scholar 

  91. M. Ali et al., First-principles investigation of structural, mechanical, and optoelectronic properties of Hf2AX (A═Al, Si and X═C, N) MAX phases. J. Am. Ceram. Soc. (2023)

  92. M.S. Dresselhaus, Solid state physics part ii optical properties of solids (2001)

  93. W. Liang, A. Beal, A study of the optical joint density-of-states function. J. Phys. C Solid State Phys. 9(14), 2823 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Yousaf.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Yousaf, M., Munir, J. et al. Controlled dynamic variation of interfacial electronic and optical properties of sodium-intercalated silicene/hBN heterostructure. Eur. Phys. J. Plus 138, 1151 (2023). https://doi.org/10.1140/epjp/s13360-023-04768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04768-7

Navigation