Skip to main content
Log in

Predictive modeling of the heat of formation of sulfur hexafluoride using data science techniques

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Applications of graph theory exist in many science disciplines including chemistry, physics, medicine, and engineering. Since computational methods as well as computer-based approaches are less expensive and efficient, these techniques are very helpful to analyze chemical compounds. Chemical graph theory is a field that includes such kinds of analyses of chemical structures. Graph descriptors, also referred as topological indices, are graph invariants that help to study different structural properties of chemical substances. Such descriptors also aid to understand different activities related to chemical compounds. The main objective of this study is to find the best appropriate index to estimate the heat of formation of \(SF_6\). Initially, we compute degree-based topological indices, co-indices, and reverse indices for Sulfur hexafluoride. A similarity measure is used for feature selection. A network of the indices is constructed based on a similarity measure which is defined using Euclidean distance and Pearson correlation. Next, twenty-one subnetworks of the network consisting of highly similar indices, referred as modules, are captured. One module is containing 13 indices, three are containing 2 indices, and all the remaining modules are comprised of only one vertex. Hierarchical clustering is used to verify the detected modules. From each module one index, called master regulatory index (\(\mathcal {MRI}\)), is selected for further study. Afterward, the thermodynamical measure heat of formation (\(\mathcal {HOF}\)) is computed. A correlation analysis is done between each master regulatory index and heat of formation to capture any uncorrelated feature, if exists. Finally, mathematical formulations between each \(\mathcal {MRI}\) and \(\mathcal {HOF}\) are estimated. The best estimate is selected based on root mean squared error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

There is no data used to support the findings.

References

  1. A.T. Balaban, Applications of graph theory in chemistry. J. Chem. Info. Comput. Sci. 25(3), 334–343 (1985)

    Article  Google Scholar 

  2. D. Bonchev, Chemical graph theory: introduction and fundamentals (Vol. 1). CRC Press, 1-100 (1991)

  3. M. Randić, C.L. Wilkins, Graph theoretical approach to recognition of structural similarity in molecules. J. Chem. Inf. Comput. Sci. 19(1), 31–37 (1979)

    Article  Google Scholar 

  4. A. Graovac, T. Pisanski, On the Wiener index of a graph. J. Math. Chem. 8(1), 53–62 (1991)

    Article  MathSciNet  Google Scholar 

  5. Z.Q. Chu, M.K. Siddiqui, S. Manzoor, S.A.K. Kirmani, M.F. Hanif, M.H. Muhammad, On rational curve fitting between topological indices and entropy measures for graphite carbon nitride. Polycycl. Arom. Compd. 10, 1–18 (2022)

    Google Scholar 

  6. S. Manzoor, M.K. Siddiqui, S. Ahmad, On physical analysis of degree-based entropy measures for metal-organic superlattices. Eur. Phys. J. Plus 136(3), 1–22 (2021)

    Article  Google Scholar 

  7. S. Manzoor, M.K. Siddiqui, S. Ahmad, Computation of entropy measures for phthalocyanines and porphyrin dendrimers. Int. J. Quant. Chem. 122(5), 174–268 (2022)

    Article  Google Scholar 

  8. X. Zhang, H.M. Awais, M. Javaid, M.K. Siddiqui, Multiplicative Zagreb indices of molecular graphs. J. Chem. 2019, 1–19 (2019)

    Article  Google Scholar 

  9. X. Zhang, H. Jiang, J.B. Liu, Z. Shao, The cartesian product and join graphs on edge-version atom-bond connectivity and geometric arithmetic indices. Molecules 23(7), 17–31 (2018)

    Article  Google Scholar 

  10. Z. Shao, M.K. Siddiqui, M.H. Muhammad, Computing zagreb indices and zagreb polynomials for symmetrical nanotubes. Symmetry 10(7), 244–260 (2018)

    Article  ADS  Google Scholar 

  11. W. Gao, M.K. Siddiqui, M. Naeem, N.A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures. Molecules 22(9), 1496–1515 (2017)

    Article  Google Scholar 

  12. X. Zhang, A. Rauf, M. Ishtiaq, M.K. Siddiqui, M.H. Muhammad, On degree based topological properties of two carbon nanotubes. Polycycl. Arom. Compd. 42(3), 866–884 (2022)

    Article  Google Scholar 

  13. X. Zhang, M. Naeem, A.Q. Baig, M.A. Zahid, Study of hardness of superhard crystals by topological indices. J. Chem. 2021, 1–10 (2021)

    Google Scholar 

  14. X. Zhang, M.K. Siddiqui, S. Javed, L. Sherin, F. Kausar, M.H. Muhammad, Physical analysis of heat for formation and entropy of Ceria Oxide using topological indices. Combinat. Chem. High Throughput Screen. 25(3), 441–450 (2022)

    Article  Google Scholar 

  15. X. Zhang, Z. Zhang, N. Chidambaram, S. Jaganathan, N. Devadoss, V. Ravi, On degree and distance-based topological indices of certain interconnection networks. Eur. Phys. J. Plus 137(7), 1–15 (2022)

    Article  Google Scholar 

  16. K.D. Rainsford, Anti-inflammatory drugs in the 21st century. Inflammation in the pathogenesis of chronic diseases: the COX-2 controversy, 3-27 (2007)

  17. B. Bollobás, P. Erdos, Graphs of extremal weights. Ars Combinatoria 50, 225–233 (1998)

    MathSciNet  Google Scholar 

  18. Xiujun Zhang, Muhammad Tanzeel Kanwal, Azeem Ali, Jamil Muhammad, Muhammad Kamran, Muzammil Mukhtar, Finite vertex-based resolvability of supramolecular chain in dialkyltin. Main Group Metal Chem. 45, 255–264 (2022)

    Article  Google Scholar 

  19. E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes. Indian J. Chem 37A, 849–855 (1998)

    Google Scholar 

  20. W. Gao, W.F. Wang, M.K. Jamil, R. Farooq, M.R. Farahani, Generalized atom-bond connectivity analysis of several chemical molecular graphs. Bulgarian Chem. Commun. 48(3), 543–549 (2016)

    Google Scholar 

  21. D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46(4), 1369–1376 (2009)

    Article  MathSciNet  Google Scholar 

  22. K.C. Das, I. Gutman, Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem 52(1), 13–21 (2004)

    MathSciNet  Google Scholar 

  23. I. Gutman et al., Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys.s 62(9), 3399–3405 (1975)

    Article  ADS  Google Scholar 

  24. B. Furtula, I. Gutman, A forgotten topological index. J. Math. Chem. 53(4), 1184–1190 (2015)

    Article  MathSciNet  Google Scholar 

  25. D. Wang, Y. Huang, B. Liu, Bounds on augmented zagreb index, MATCH Commun. Math. Comput. Chem. 68, 209–216 (2011)

    Google Scholar 

  26. P.S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 1(4), 116–121 (2013)

    Google Scholar 

  27. V.R. Kulli, Reverse Zagreb and reverse hyper-Zagreb indices and their polynomials of rhombus silicate networks. Ann. Pure Appl. Math. 16(1), 47–51 (2018)

    Article  Google Scholar 

  28. D. Amić, D. Bešlo, B. Lucić, S. Nikolić, N. Trinajstić, The vertex-connectivity index revisited. J. Chem. Info. Comput. Sci. 38(5), 819–822 (1998)

    Article  Google Scholar 

  29. R. Griessen, T. Riesterer, Heat of formation models. Hydrogen in intermetallic compounds I: electronic, thermodynamic, and crystallographic properties, preparation, 219-284 (2005)

  30. J.B. Pedley, Thermochemical Data and Structures of Organic Compounds; TRC Data Series. Thermodynamics Research Center, College Station, Volume 1; USA (1994)

  31. V. Diky, A. Bazyleva, E. Paulechka, J.W. Magee, V. Martinez, D. Riccardi, K. Kroenlein, Validation of thermophysical data for scientific and engineering applications. J. Chem. Thermodyn. 133, 208–222 (2019)

    Article  Google Scholar 

  32. C. Gertig, K. Leonhard, A. Bardow, Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. Curr. Opin. Chem. Eng 27, 89–97 (2020)

    Article  Google Scholar 

  33. D. Coll-Mayor, M. Paget, E. Lightner, Future intelligent power grids: analysis of the vision in the European Union and the United States. Energy Policy 35(4), 2453–2465 (2007)

    Article  Google Scholar 

  34. Z. Tu, T. Stuyver, C.W. Coley, Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery. Chem. Sci. 14(2), 226–244 (2022)

    Article  Google Scholar 

  35. E.G. Meyer, C.E. Buell, Note on the specific heat of sulfur hexafluoride. J. Chem. Phys. 16(7), 744–744 (1948)

    Article  ADS  Google Scholar 

  36. P.A.G. O’Hare, Thermochemistry of inorganic sulfur compounds IV. Standard molar enthalpy of formation of sulfur hexafluoride. J. Chem. Thermodyn. 17(4), 349–354 (1985)

    Article  Google Scholar 

  37. L. Chen, H. Yang, K. Song et al., Failure mechanisms and characteristics of the Zhongbao landslide at Liujing Village, Wulong, China. Landslides 18, 1445–1457 (2021)

    Article  Google Scholar 

  38. S. Farinaz, Z.H. Azim, J.A. Farzane, R.J. Gregory, Thatcher, Iodocyclization of S-(homo)propargyl dithiocarbamates: Regiospecific synthesis of 2-imino(iminium)-1, 3-dithiolanes/dithianes/dithiepanes. Tetrahedron Lett. 128, 154–168 (2023)

    Google Scholar 

  39. J.A. Farzane, S. Farinaz, E.H. Seyyed, Z.H. Azim, Direct synthesis of piperazines containing dithiocarbamate derivatives via DABCO bond cleavage. Tetrahedron Letters 61(49), 152–160 (2020)

    Google Scholar 

  40. H. Yang, Z. Wang, K. Song, A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng. Comput. 38, 2469–2485 (2022)

    Article  Google Scholar 

  41. H. Yang, C. Chen, J. Ni, S. Karekal, A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone. Sci. Total Environ. 885, 163–167 (2023)

    Article  Google Scholar 

  42. L. Yuanbin, H. Weixiang, C. Bingyang, Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. Energy 188, 116–171 (2019)

    Google Scholar 

  43. E. Inbar, V.K. Hughitt, L.A. Dillon, K. Ghosh, N.M. El-Sayed, D.L. Sacks, The transcriptome of Leishmania major developmental stages in their natural sand fly vector. MBio 8(2), 1–17 (2017)

    Article  Google Scholar 

  44. P. Langfelder, S. Horvath, WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9(1), 559–569 (2008)

    Article  Google Scholar 

  45. G.H. Ball, D.J. Hall, A clustering technique for summarizing multivariate data. Behav. Sci. 12(2), 153–155 (1967)

    Article  Google Scholar 

  46. A. Saxena, M. Prasad, A. Gupta, N. Bharill, O.P. Patel, A. Tiwari, C.T. Lin, A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work was equally contributed by all writers.

Corresponding author

Correspondence to Muhammad Kamran Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, S., Siddiqui, M.K., Khalid, S. et al. Predictive modeling of the heat of formation of sulfur hexafluoride using data science techniques. Eur. Phys. J. Plus 138, 1119 (2023). https://doi.org/10.1140/epjp/s13360-023-04761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04761-0

Navigation