Skip to main content
Log in

Determination of boron in borated concrete by means of a simplified prompt gamma activation analysis at the HOTNES facility

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The prompt gamma activation analysis (PGAA) is an elemental analysis based on the γ-ray emission following neutron radiative capture by nuclides. A simplified and compact PGAA for the determination of boron in borated concrete was setup at the HOTNES neutron facility, relying on common laboratory equipment. The thermal neutron field has fluence rate of about 20 cm−2 s−1 and is obtained from a moderated americium-boron neutron source. The γ-ray detector is a common 3″ × 3″ NaI(Tl) scintillator. Samples of borated resin with the same geometry of the concrete samples were manufactured and used as standards. A specific “blank sample” correction was developed to isolate the boron contribution in the spectra obtained by irradiating the concrete samples. Boron quantities in the order of 1.5–2.0 g were measured in the concrete samples with uncertainty in the order of ± 6%, in agreement with manufacturer's expectations. The Detection Limit of this simplified and compact boron analysis is in the order of 0.3 g in terms of boron mass, in line with values given in literature for PGAA-based boron analysis performed at research fission reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: He data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. G.L. Molnàr, Handbook of Prompt Gamma Activation Analysis (Springer, New York, NY, 2004)

    Book  Google Scholar 

  2. F. Baechler et al., Nucl. Instr. Meth. A 488, 410 (2002)

    Article  ADS  Google Scholar 

  3. T. Kobayashi, K. Kanda, Nucl. Instr. Meth. 204, 525 (1983)

    Article  Google Scholar 

  4. M. Crittin, J. Jolie, J. Kern, S.J. Mannanal, R. Schwarzbach, B. Larsson et al. (eds.), Advances in Neutron Capture Therapy (Elsevier, Amsterdam, 1996), p.343

    Google Scholar 

  5. S. Sollradl et al., J. Radioanal. Nucl. Chem. 298, 2069 (2013)

    Article  Google Scholar 

  6. L.A. Currie, Appl. Radiochem. Anal. Chem. 40, 586 (1968)

    Article  Google Scholar 

  7. J.A. Robinson, M.R. Hartman, S.R. Seese, J. Radioanal. Nucl. Chem. 283, 359 (2010)

    Article  Google Scholar 

  8. E.A. Mackey et al., Nucl. Instr. Meth. B 226, 426 (2004)

    Article  ADS  Google Scholar 

  9. S.H. Byun, G.M. Sun, H.D. Choi, Nucl. Instrum. Meth. B 213, 535 (2004)

    Article  ADS  Google Scholar 

  10. D.D. DiJulio et al., Nucl. Instr. Meth. A 859, 41 (2017)

    Article  ADS  Google Scholar 

  11. E. Gallego et al., Nucl. Technol. 168, 399 (2009)

    Article  ADS  Google Scholar 

  12. D.I. Tishkevich et al., RSC Adv. 13, 24491 (2023)

    Article  ADS  Google Scholar 

  13. D.A. Aloraini et al., Opt. Mater. 121, 111589 (2021)

    Article  Google Scholar 

  14. D.I. Tishkevich et al., Nanomaterials 12, 1642 (2022)

    Article  Google Scholar 

  15. A.V. Trukhanov et al., Ceram. Int. 45, 15412 (2019)

    Article  Google Scholar 

  16. M.T. Alabsy et al., Materials 14, 5051 (2021)

    Article  ADS  Google Scholar 

  17. D.I. Tishkevich et al., IOP Conf. Ser. Mater. Sci. Eng. 848, 012089 (2020)

    Article  Google Scholar 

  18. S. Pospı́šil et al., Nucl. Instr. Meth. A 420, 249 (1999)

    Article  ADS  Google Scholar 

  19. M. Dong et al., J. Clean. Prod. 355, 131817 (2022)

    Article  Google Scholar 

  20. A. Sperduti et al., JINST 12, P12029 (2017)

    Article  Google Scholar 

  21. R. Bedogni et al., Nucl. Instr. Meth. A 843, 18 (2017)

    Article  ADS  Google Scholar 

  22. R. Bedogni et al., Appl. Radiat. Isot. 127, 68 (2017)

    Article  Google Scholar 

  23. Tecnostrutture S.r.l. website. https://www.tecnostrutture.eu/

  24. C.J. Werner (ed.), MCNP Users’ Manual-Code Version 6.2 (Los Alamos National Laboratory, Los Alamos, USA, 2017)

    Google Scholar 

  25. A. Pietropaolo et al., Eur. Phys. J. Plus 136, 1140 (2021)

    Article  Google Scholar 

  26. G.M. Contessa et al., Environments 9, 71 (2022)

    Article  Google Scholar 

  27. P. Ferrari et al., Eur. Phys. J. Plus 138, 435 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pietropaolo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietropaolo, A., Russo, L., Calamida, A. et al. Determination of boron in borated concrete by means of a simplified prompt gamma activation analysis at the HOTNES facility. Eur. Phys. J. Plus 138, 1114 (2023). https://doi.org/10.1140/epjp/s13360-023-04752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04752-1

Navigation