Skip to main content
Log in

Relativistic atomic structure calculations, plasma and thermodynamic parameters for Ca X

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Excitation energies, lifetimes and radiative data including line strengths, oscillator strengths, transition wavelengths and transition probabilities have been reported for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for Na-like Ca X ion. These extensive calculations for 1s22s22p6nl configurations (n = 1 to 7 and l = 0 to 4) of Na like Ca X have been made using multi-configuration Dirac–Fock (MCDF) method. The effect of Breit-interaction and quantum electrodynamics (QED) on energy levels has also been discussed in graphical form. Shift in energy levels due to correlation effects, namely core-valence correlation and valence-valence correlation has also been reported. Further, similar calculations have also been made using the configuration interaction technique (CIV3) and relativistic configuration interaction (RCI) technique to ensure the accuracy of our results. Our calculated results are in good agreement with the available experimental and theoretical data. Plasma parameters like electron density, plasma frequency, coupling parameter and skin depth for the spectral lines 1s22s22p63s 2S1/2  –1s22s22p63p \({^2P}_{3/2}^{o}\) (1–3) and 1s22s22p63s 2S1/2–1s22s22p63p \({^2P}_{1/2}^{o}\) (1–2) have also been studied for hot dense plasma. We have also reported the line intensity ratio for the spectral lines 1–3 and 1–2. The influence of plasma temperature on the relative population for 1st 2 excited states, partition function and thermodynamic parameters have also been studied. The present results will be helpful in astrophysical plasmas, modelling and characterization of hot dense plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. I. Martinson, Rep. Prog. Phys. 52, 157–225 (1989)

    Article  ADS  Google Scholar 

  2. M. Mohan, J. Singh, S. Aggarwal, N. Verma, New Trends At. Mol. Phys. 76, 23–37 (2013)

    Article  Google Scholar 

  3. A.K. Singh, M. Dimri, D. Dawra, A.K.S. Jha, M. Mohan, Can. J. Phys. 97, 436–442 (2018)

    Article  ADS  Google Scholar 

  4. A.K. Singh, M. Dimri, D. Dawra, A.K.S. Jha, N. Verma, M. Mohan, Radiat. Phys. Chem. 156, 174–192 (2018)

    Article  ADS  Google Scholar 

  5. A.K. Singh, M. Dimri, D. Dawra, A.K.S. Jha, M. Mohan, Phys. Plasmas 26, 062704–062717 (2019)

    Article  ADS  Google Scholar 

  6. C.H. Skinner, Phys. Scr. 134, 014022–014024 (2009)

    Article  Google Scholar 

  7. R.J. Hawryluk et al., Phys. Plasmas 5, 1577–1589 (1998)

    Article  ADS  Google Scholar 

  8. G.P. Gupta, A.Z. Msezane, J. Phys. B At. Mol. Opt. Phys. 39, 4977–4984 (2006)

    Article  ADS  Google Scholar 

  9. M.D. Rosen, P.L. Hagelstein, D.L. Matthews, E.M. Campbell, A.U. Hazi, B.L. Whitten, B.M. Gowan, R.E. Turner, R.W. Lee, G. Charatis, G.E. Busch, C.L. Shepard, P.D. Rockett, Phys. Rev. Lett. 54, 106–110 (1985)

    Article  ADS  Google Scholar 

  10. G. Celik, S. Ates, G. Tekeli, Can. J. Phys. 94, 23–25 (2015)

    Article  ADS  Google Scholar 

  11. W.O. Younis, S.H. Allam, T.M. El-Sherbini, At. Data Nucl. Data Tables 92, 187–205 (2006)

    Article  ADS  Google Scholar 

  12. N.J. Peacock, M.F. Stamp, J.D. Silver, Phys. Scr. 8, 10–20 (1984)

    Article  Google Scholar 

  13. L.N. Ivanov, E.P. Ivanova, At. Data Nucl. Data Tables 2, 95–109 (1979)

    Article  ADS  Google Scholar 

  14. B. Edlen, E. Boden, Phys. Scr. 14, 31–38 (1976)

    Article  ADS  Google Scholar 

  15. L. Cohen, W.E. Behring, J. Opt. Soc. Am. 66, 899–904 (1976)

    Article  ADS  Google Scholar 

  16. E. Trabert, E.H. Pinnington, J.A. Kernahan, J. Doerfert, J. Granzow, P.H. Heckmann, R. Hutton, J. Phys. B At. Mol. Opt. Phys. 29, 2647–2659 (1996)

    Article  ADS  Google Scholar 

  17. L. Liljeby, A. Lindgard, S. Mannervik, E. Veje, B. Jelenkovic, Phys. Scr. 21, 805–810 (1980)

    Article  ADS  Google Scholar 

  18. J. Reader, V. Kaufman, J. Sugar, J.O. Ekberg, U. Feldman, C.M. Brown, J.F. Seely, W.L. Rowan, J. Opt. Soc. Am. B 4, 1821–1828 (1987)

    Article  ADS  Google Scholar 

  19. E. Charro, I. Martin, J. Phys. B At. Mol. Opt. Phys. 35, 3227–3241 (2002)

    Article  ADS  Google Scholar 

  20. J.D. Gillaspy, D. Osin, Yu. Ralchenko, J. Reader, S.A. Blundell, Phys. Rev. A 87, 062503–062513 (2013)

    Article  ADS  Google Scholar 

  21. N. Singh, M. Mohan, Phys. Scr. 64, 149–151 (2001)

    Article  ADS  Google Scholar 

  22. T.Y. Zhang, N.W. Zheng, A. Phys, Pol. A 115, 629–635 (2009)

    Google Scholar 

  23. S.N. Tiwary, Int. J. Theor. Phys. 32, 2047–2051 (1993)

    Article  Google Scholar 

  24. S.A. Blundell, Phys. Rev. A 47, 1790–1803 (1993)

    Article  ADS  Google Scholar 

  25. W.R. Johnson, Z.W. Liu, J. Sapirstein, At. Data Nucl. Data Tables 64, 279–300 (1996)

    Article  ADS  Google Scholar 

  26. G. Del Zanna, M. Landini, H.E. Mason, Astron. Astrophys. 385, 968–985 (2002)

    Article  ADS  Google Scholar 

  27. R.K. Choudhari, S. Chattopadhyay, U.S. Mahapatra, Phys. Plasmas 19, 082701–082707 (2012)

    Article  ADS  Google Scholar 

  28. W. Siegel, J. Migdalek, Y.K. Lim, At. Data Nucl. Data Tables 68, 303–322 (1998)

    Article  ADS  Google Scholar 

  29. I.P. Grant, B.J. Mckenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper, Comput. Phys. Commun. 21, 207–231 (1980)

    Article  ADS  Google Scholar 

  30. P.H. Norrington, (2009). http://www.am.qub.ac.uk/DARC/

  31. V. Jonauskas, P. Bogdanovich, F.P. Keenan, R. Kisielius, M.E. Foord, R.F. Heeter, S.J. Rose, G.J. Ferland, P.H. Norrington, Astron. Astrophys. 455, 1157–1160 (2006)

    Article  ADS  Google Scholar 

  32. A. Goyal, I. Khatri, S. Aggarwal, A.K. Singh, M. Mohan, Can. J. Phys. 93, 487–495 (2015)

    Article  ADS  Google Scholar 

  33. S. Aggarwal, A.K.S. Jha, I. Khatri, N. Singh, M. Mohan, Chin. Phys. B 24, 053201–053208 (2015)

    Article  Google Scholar 

  34. A. Goyal, I. Khatri, S. Aggarwal, A.K. Singh, M. Mohan, J. Quant. Spectrosc. Radiat. Transf. 161, 157–170 (2015)

    Article  ADS  Google Scholar 

  35. M.F. Gu, Can. J. Phys. 86, 675–689 (2008)

    Article  ADS  Google Scholar 

  36. D.H. Sampson, H.L. Zhang, A.K. Mohanty, R.E. Clark, Phys. Rev. A 40, 604–615 (1989)

    Article  ADS  Google Scholar 

  37. A. Hibbert, Comput. Phys. Commun. 9, 141–172 (1975)

    Article  ADS  Google Scholar 

  38. R. Glass, A. Hibbert, Comput. Phys. Commun. 16, 19–34 (1978)

    Article  ADS  Google Scholar 

  39. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177–478 (1974)

    Article  ADS  Google Scholar 

  40. V. Tayal, G.P. Gupta, Phys. Scr. 75, 331–339 (2007)

    Article  ADS  Google Scholar 

  41. P. Oliver, A. Hibbert, J. Phys. B 43, 074013–074016 (2010)

    Article  ADS  Google Scholar 

  42. NIST Atomic Spectra Database (2023). https://physics.nist.gov/asd. Accessed 10 Jan 2023

  43. C. Aragon, J.A. Aguilera, Spectrochim Acta Part B 63, 893–916 (2008)

    Article  ADS  Google Scholar 

  44. H.R. Griem, J. Plasma Phys. 60, 203–207 (1998)

    Google Scholar 

  45. I.H. Hutchinson, Principles of plasma diagnostics, in Plasma Physics and Controlled Fusion. (Cambridge University Press, Cambridge, 2005), pp.2603–2603

    Google Scholar 

  46. R.W.P. McWhirter, Plasma Diagnostic Techniques (Academic Press, New York, 1965), pp.201–264

    Google Scholar 

  47. A.K. Pradhan, S.N. Nahar, Atomic Astrophysics and Spectroscopy (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  48. G. D’Ammando, G. Colonna, M. Capitelli, Phys. Plasmas 20, 032108–032117 (2013)

    Article  ADS  Google Scholar 

  49. N. Singh, A. Goyal, Phys. Plasmas 25, 093303–093308 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is carried out at Jawaharlal Nehru University, New Delhi, India. Dr. Alok Kumar Singh Jha gratefully acknowledges the financial assistance provided by SERB, the Department of Science and Technology (DST), Government of India under the research grant No. CRG/2022/008061. Narendra Kumar is thankful to Department of Science and Technology (DST) for awarding Inspire—Junior Research Fellowship. Dr. Alok Kumar Singh Jha is also thankful to Jawaharlal Nehru University, New Delhi, India for providing the necessary resources.

Funding

Department of Science and Technology, DST-SERB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Singh Jha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Shivankar, Jha, A.K.S. et al. Relativistic atomic structure calculations, plasma and thermodynamic parameters for Ca X. Eur. Phys. J. Plus 138, 1155 (2023). https://doi.org/10.1140/epjp/s13360-023-04751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04751-2

Navigation