Skip to main content
Log in

Theoretical study of the atomic parameters, plasma parameters and photoionization of W LXIV

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have presented atomic data including energies, transition wavelengths, radiative rates and oscillator strengths, which are evaluated for W LXIV, for the lowest 100 fine structure levels and multipole transitions (E1, E2, M1 and also for M2). For W LXIV, we identified the 21 in electric dipole, 33 in electric quadrupole, 28 in magnetic dipole and 21 in magnetic quadrupole soft x-ray (SXR) transitions, as well as 1 in electric dipole extreme ultraviolet (EUV) transitions from the ground state. Furthermore, we have analysed the photoionization cross section and ionization potential of 3s, 3p and 3d levels of Na-like W at five different photoelectron energies by employing the FAC code. Line intensity ratios and electron density for W LXIV have also been reported, which will be useful and necessary for plasma diagnostics, including modelling for future International Thermonuclear Experimental Reactor (ITER) investigations. We assume that our observations will be useful for cell biology, biophysics, fusion plasma research, as well as astrophysical studies and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used in the manuscript are included within the article and all citation references with (DOI) are mentioned or texted as references at relevant places.]

References

  1. R. Aymar, P. Barabaschi, Y. Shimomura, The ITER design. Plasma Phys. Control. Fusion 44, 519–565 (2002). https://doi.org/10.1088/0741-3335/44/5/304

    Article  ADS  Google Scholar 

  2. A.V. Demura, M.B. Kadomtsev, V.S. Lisitsa, V.A. Shurygin, Electron impact ionization of tungsten ions in a statistical model. JETP Lett. 101, 85–88 (2015). https://doi.org/10.1134/S0021364015020058

    Article  ADS  Google Scholar 

  3. A. Müller, S. Schippers, J. Hellhund, A.L.D. Kilcoyne, R.A. Phaneuf, B.M. Mclaughlin, Photoionization of tungsten ions: experiment and theory for W5+. J. Phys. B At. Mol. Opt. Phys. 52, 195005 (2019). https://doi.org/10.1088/1361-6455/ab39c8

    Article  ADS  Google Scholar 

  4. J.J. Boyle, Z. Altun, H.P. Kelly, Photoionization cross-section calculation of atomic tungsten. Phys. Rev. A 47, 4811–4830 (1993). https://doi.org/10.1103/PhysRevA.47.4811

    Article  ADS  Google Scholar 

  5. O. Physics, Photoionization of tungsten ions : experiment and theory for and Manuscript version : Accepted Manuscript Photoionization of tungsten ions : experiment and, (2016) 0–16.

  6. T. Pütterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O’Mullane, Modelling of measured tungsten spectra from ASDEX Upgrade and predictions for ITER. Plasma Phys. Control. Fusion. (2008). https://doi.org/10.1088/0741-3335/50/8/085016

    Article  Google Scholar 

  7. A.E. Kramida, J. Reader, Ionization energies of tungsten ions: W2+ through W71+. At. Data Nucl. Data Tables 92, 457–479 (2006). https://doi.org/10.1016/j.adt.2006.03.002

    Article  ADS  Google Scholar 

  8. A.E. Kramida, T. Shirai, Energy levels and spectral lines of tungsten, W III through W LXXIV. At. Data Nucl. Data Tables 95, 305–474 (2009). https://doi.org/10.1016/j.adt.2008.12.002

    Article  ADS  Google Scholar 

  9. A. Kramida, Recent progress in spectroscopy of tungsten. Can. J. Phys. 89, 551–570 (2011). https://doi.org/10.1139/p11-045

    Article  ADS  Google Scholar 

  10. U.I. Safronova, A.S. Safronova, P. Beiersdorfer, Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Na-like W from Ne-like W. At. Data Nucl. Data Tables 95, 751–785 (2009). https://doi.org/10.1016/j.adt.2009.04.001

    Article  ADS  Google Scholar 

  11. A.S. Safronova, A. Stafford, A.K. Gill, R.R. Childers, Polarization of hard X-ray dielectronic satellite lines from Na-like W ions. J. Quant. Spectrosc. Radiat. Transf. 272, 107788 (2021). https://doi.org/10.1016/j.jqsrt.2021.107788

    Article  Google Scholar 

  12. M.B. Trzhaskovskaya, V.K. Nikulin, Radiative recombination and photoionization data for tungsten ions. Electron Struct. Ions Plasmas Atoms. 3, 86–119 (2015). https://doi.org/10.3390/atoms3020086

    Article  Google Scholar 

  13. P. Beiersdorfer, M.J. May, J.H. Scofield, S.B. Hansen, Atomic physics and ionization balance of high-Z Ions: critical ingredients for characterizing and understanding high-temperature plasmas. High Energy Density Phys. 8, 271–283 (2012). https://doi.org/10.1016/j.hedp.2012.03.003

    Article  ADS  Google Scholar 

  14. P. Beiersdorfer, J.K. Lepson, M.B. Schneider, M.P. Bode, L-shell x-ray emission from neonlike W64+. Phys Rev. A At. Mol. Opt. Phys. 86, 1–11 (2012). https://doi.org/10.1103/PhysRevA.86.012509

    Article  Google Scholar 

  15. B. Li, G. O’Sullivan, C. Dong, X. Chen, Dielectronic recombination of tungsten ions. J. Phys. B At. Mol. Opt. Phys. 49, 1–15 (2016). https://doi.org/10.1088/0953-4075/49/15/155201

    Article  Google Scholar 

  16. W.D. Chen, J. Xiao, Y. Shen, Y.Q. Fu, F.C. Meng, C.Y. Chen, B.H. Zhang, Y.J. Tang, R. Hutton, Y. Zou, Precise studies on resonant energies of the first intershell (KLL) dielectronic recombination processes for He- up to O-like xenon. Phys. Plasmas (2008). https://doi.org/10.1063/1.2967486

    Article  Google Scholar 

  17. T. Dipti, L. Das, R. Sharma, Srivastava, L-shell electron excitations of Mg- through O-like tungsten ions. Phys. Scr. (2014). https://doi.org/10.1088/0031-8949/89/8/085403

    Article  Google Scholar 

  18. J. Huang, G. Jiang, Q. Zhao, Ground-state ionization potentials for lithium through neon isoelectronic sequences with Z = 37–82. Chin. Phys. Lett. 23, 69–72 (2006). https://doi.org/10.1088/0256-307X/23/1/021

    Article  ADS  Google Scholar 

  19. D. Priti, L. Sharma, R. Srivastava, Fully relativistic electron impact excitation cross-section and polarization for tungsten ions. Atoms 3, 53–75 (2015). https://doi.org/10.3390/atoms3020053

    Article  ADS  Google Scholar 

  20. W. Eckstein, J. Bohdansky, J. Roth, Atomic and plasma material interaction data for fusion. Nucl. Fusion 1, 51 (1991)

    Google Scholar 

  21. R.K. Pandey, Spectroscopic study of EUV and SXR transitions of Ba XLVI. J. At. Mol. Condens. Nano Phys. 5, 18–39 (2018). https://doi.org/10.26713/jamcnp.v5i1.836

    Article  Google Scholar 

  22. M. Klapisch, P. Mandelbaum, A. Zigler, C. Bauche-Arnoult, J. Bauche, The unresolved3d-4f transitions in thex-ray spectra of highly lonized tm to re from laser produced plasma. Phys. Scr. 34, 51–57 (1986). https://doi.org/10.1088/0031-8949/34/1/009

    Article  ADS  Google Scholar 

  23. E.M.B. Thiemann, F.G. Eparvier, V. Knoer, A. Al Muharrami, R.J. Lillis, Solar extreme ultraviolet irradiance uncertainties for planetary studies. J. Geophys. Res. Sp. Phys. (2021). https://doi.org/10.1029/2020JA028184

    Article  Google Scholar 

  24. V.S. Airapetian, J. Allred, Forward modeling of synthetic EUV/SXR emission from solar coronal active regions: Case of AR 11117. (2014). http://arxiv.org/abs/1409.3866.

  25. J. Holburg, M. Müller, K. Mann, S. Wieneke, Brilliance improvement of laser-produced extreme ultraviolet and soft x-ray plasmas based on pulsed gas jets. J. Vac. Sci. Technol. A 37, 031303 (2019). https://doi.org/10.1116/1.5089201

    Article  Google Scholar 

  26. Q.M. Zhang, H.S. Ji, A swirling flare-related EUV jet. Astron. Astrophys. 561, 1–7 (2014). https://doi.org/10.1051/0004-6361/201322616

    Article  Google Scholar 

  27. P.W. Wachulak, A. Bartnik, M. Skorupka, J. Kostecki, R. Jarocki, M. Szczurek, L. Wegrzynski, T. Fok, H. Fiedorowicz, Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Appl. Phys. B Lasers Opt. 111, 239–247 (2013). https://doi.org/10.1007/s00340-012-5324-y

    Article  ADS  Google Scholar 

  28. A. Bartnik, H. Fiedorowicz, P. Wachulak, T. Fok, Temporal measurements of extreme ultraviolet (EUV) emission, from low temperature, EUV-induced plasmas. Laser Part. Beams 36, 286–292 (2018). https://doi.org/10.1017/S0263034618000319

    Article  ADS  Google Scholar 

  29. P. Wachulak, A. Torrisi, M. Ayele, A. Bartnik, J. Czwartos, Ł Wȩgrzyński, T. Fok, H. Fiedorowicz, Nanoimaging using soft X-ray and EUV laser-plasma sources. EPJ Web Conf. 167, 1–5 (2018). https://doi.org/10.1051/epjconf/201816703001

    Article  Google Scholar 

  30. P. Wachulak, A. Torrisi, M. Ayele, J. Czwartos, A. Bartnik, Ł Wegrzyński, T. Fok, T. Parkman, Š Salačová, J. Turňová, M. Odstrčil, H. Fiedorowicz, Bioimaging using full field and contact EUV and SXR microscopes with nanometer spatial resolution. Appl. Sci. (2017). https://doi.org/10.3390/app7060548

    Article  Google Scholar 

  31. A. Torrisi, P.W. Wachulak, A. Bartnik, Ł Węgrzyński, T. Fok, H. Fiedorowicz, Biological and material science applications of EUV and SXR nanoscale imaging systems based on double stream gas puff target laser plasma sources. Nucl. Instrum. Methods Phys. Res. Sect B Beam Interact. Mater. Atoms. 411, 29–34 (2017). https://doi.org/10.1016/j.nimb.2017.01.035

    Article  ADS  Google Scholar 

  32. L.H. Yang, Y.C. Jiang, J.Y. Yang, Y. Bi, R.S. Zheng, J.C. Hong, Observations of EUV and soft X-ray recurring jets in an active region. Res. Astron. Astrophys. 11, 1229–1242 (2011). https://doi.org/10.1088/1674-4527/11/10/010

    Article  ADS  Google Scholar 

  33. G.Y. Liang, F. Li, F.L. Wang, Y. Wu, J.Y. Zhong, G. Zhao, X-Ray and euv spectroscopy of various astrophysical and laboratory plasmas: collisional, photoionization and charge-exchange plasmas. Astrophys. J. (2014). https://doi.org/10.1088/0004-637X/783/2/124

    Article  Google Scholar 

  34. A. Bartnik, W. Skrzeczanowski, H. Fiedorowicz, P. Wachulak, T. Fok, EUV induced plasmas created in atomic and molecular gases, (n.d.) 502.

  35. J.B. Spencer, D.A. Alman, D.N. Ruzic, B.E. Jurczyk, Dynamics of a laser produced plasma for soft x-ray production. Emerg. Lithogr. Technol. IX. 5751, 798 (2005). https://doi.org/10.1117/12.598543

    Article  ADS  Google Scholar 

  36. M.F. Gu, The Flexible Atomic Code, 2004. http://kipac-tree.stanford.edu/fac,.

  37. M.A. Baig, Measurement of photoionization cross-section for the excited states of atoms: a review. Atoms (2022). https://doi.org/10.3390/atoms10020039

    Article  Google Scholar 

  38. Atomic Astrophysics and spectroscopy, A.K. Pradhan, S.N. Nahar, www.cambridge.org, ISBN 978-0-521-82536-8.

  39. D.H. Sampson, H.L. Zhang, A.K. Mohanty, R.E.H. Clark, Phys. Rev. A 40, 604 (1989)

    Article  ADS  Google Scholar 

  40. N. Singh, A.K.S. Jha, M. Mohan, Breit-Pauli energy levels and radiative lifetimes in neutral chlorine. Eur. Phys. J. D 38, 285–291 (2006). https://doi.org/10.1140/epjd/e2006-00068-4

    Article  ADS  Google Scholar 

  41. T. An, P. Yuan, G. Lu, J. Che, X. Wing, M. Zhang, Y. An, The radius and temperature distribution along radial direction of lightning plasma channel. Phys. Plasmas 26, 013506 (2019). https://doi.org/10.1063/1.5059363

    Article  ADS  Google Scholar 

  42. A.K. Singh, M. Dimri, D. Dawra, A.K. Jha, M. Mohan, Relativistic atomic structure calculations and study of plasma parameters for Na-like Se XXIV. Phys. Plasmas 26, 062704 (2019). https://doi.org/10.1063/1.5100565

    Article  ADS  Google Scholar 

  43. C. Aragón, J.A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods. Spectrochim. Acta Part B At. Spectrosc. 63, 893–916 (2008). https://doi.org/10.1016/j.sab.2008.05.010

    Article  ADS  Google Scholar 

  44. T. Fujimoto, R.W.P. Mc Whirter, Validity criteria for local thermodynamic equilibrium in plasma spectroscopy. Phys. Rev. A 42, 6588 (1990). https://doi.org/10.1103/PhysRevA.42.6588

    Article  ADS  Google Scholar 

  45. R.W.P. McWhirter (1965). Plasma Diagnostic Techniques (Huddleston, R. H.; Leonard S. L., Eds). New York: Academic.

  46. K.M. Aggarwal, F.P. Keenan, Radiative rates for E1, E2, M1, and M2 transitions in S-like to F-like tungsten ions (W LIX to W LXVI). At. Data Nucl. Data Tables 111–112, 187–279 (2016). https://doi.org/10.1016/j.adt.2016.02.004

    Article  ADS  Google Scholar 

  47. F. Hu, C. Wang, J. Yang, G. Jiang, L. Hao, Multiconfiguration Dirac–Fock calculations of transition probabilities of some tungsten ions. Phys. Scr. (2011). https://doi.org/10.1088/0031-8949/84/01/015302

    Article  Google Scholar 

  48. M.D. Turkington, C.P. Ballance, A. Hibbert, C.A. Ramsbottom, Benchmarking a modified version of the civ3 nonrelativistic atomic-structure code within Na-like-tungsten R-matrix calculations. Phys. Rev. A 94, 1–9 (2016). https://doi.org/10.1103/PhysRevA.94.022508

    Article  Google Scholar 

  49. M. Xu, G. Jiang, M. Wu, X. Li, G. Bian, F. Hu, Multiconfiguration dirac-fock calculations of excitation energies and wavelengths in highly charged tungsten ions. Can. J. Phys. 94, 563–568 (2016). https://doi.org/10.1139/cjp-2015-0772

    Article  ADS  Google Scholar 

  50. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, https://physics.-nist.gov/asd for NIST Atomic Spectra Database (ver. 5.6.1) (2019).

Download references

Acknowledgements

We express our sincere gratitude to Delhi Technological University in gratitude for their support and for enhancing our services and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Paijwar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paijwar, R., Sharma, R. Theoretical study of the atomic parameters, plasma parameters and photoionization of W LXIV. Eur. Phys. J. Plus 138, 1120 (2023). https://doi.org/10.1140/epjp/s13360-023-04746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04746-z

Navigation