Skip to main content
Log in

Detection of Berezinskii–Kosterlitz–Thouless transitions for the two-dimensional q-state clock models with neural networks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using the technique of supervised neural networks (NN), we study the phase transitions of two-dimensional (2D) 6- and 8-state clock models on the square lattice. The employed NN has only one input layer, one hidden layer of 2 neurons, and one output layer. In addition, the NN is trained without using any prior information about the considered models. Interestingly, despite its simple architecture, the built supervised NN not only detects both the two Berezinskii–Kosterlitz–Thouless (BKT) transitions but also determines the transition temperatures with reasonable high accuracy. It is remarkable that an NN, which has a very simple structure and is trained without considering any input from the studied models, can be employed to study topological phase transitions. The outcomes shown here as well as those previously demonstrated in the literature suggest the feasibility of constructing a universal NN that is applicable to investigate the phase transitions of many systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are available from the corresponding author on reasonable request.]

References

  1. V.L. Berezinskii, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP 32, 493–500 (1971)

    ADS  MathSciNet  Google Scholar 

  2. V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972)

    ADS  Google Scholar 

  3. J.M. Kosterlitz, D.J. Thouless, Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory). J. Phys. C 5, L124–L126 (1972). https://doi.org/10.1088/0022-3719/5/11/002

    Article  ADS  Google Scholar 

  4. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973). https://doi.org/10.1088/0022-3719/6/7/010

    Article  ADS  Google Scholar 

  5. J.M. Kosterlitz, The critical properties of the two-dimensional xy model. J. Phys. C 7, 1046–1060 (1974). https://doi.org/10.1088/0022-3719/7/6/005

    Article  ADS  Google Scholar 

  6. J.V. José, L.P. Kadanoff, S. Kirkpatrick, D.R. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217–1241 (1977). https://doi.org/10.1103/PhysRevB.16.1217

    Article  ADS  Google Scholar 

  7. J.L. Cardy, General discrete planar models in two dimensions: duality properties and phase diagrams. J. Phys. A 13, 1507–1515 (1980). https://doi.org/10.1088/0305-4470/13/4/037

    Article  ADS  MathSciNet  Google Scholar 

  8. H.H. Roomany, H.W. Wyld, Finite-lattice Hamiltonian results for the phase structure of the \(Z_q\) models and the \(q\)-state Potts models. Phys. Rev. B 23, 1357–1361 (1981). https://doi.org/10.1103/PhysRevB.23.135

    Article  ADS  Google Scholar 

  9. J. Tobochnik, Properties of the \(q\)-state clock model for \(q\)=4,5, and 6. Phys. Rev. B 26, 6201–6207 (1982). https://doi.org/10.1103/PhysRevB.26.6201

    Article  ADS  Google Scholar 

  10. Y. Tomita, Y. Okabe, Probability-changing cluster algorithm for potts models. Phys. Rev. Lett. 86, 572–575 (2001). https://doi.org/10.1103/PhysRevLett.86.572

    Article  ADS  Google Scholar 

  11. Y. Tomita, Y. Okabe, Probability-changing cluster algorithm for two-dimensional \(XY\) and clock models. Phys. Rev. B 65(18), 184405 (2002). https://doi.org/10.1103/PhysRevB.65.184405

    Article  ADS  Google Scholar 

  12. Y. Tomita, Y. Okabe, Finite-size scaling of correlation ratio and generalized scheme for the probability-changing cluster algorithm. Phys. Rev. B 66, 180401 (2002). https://doi.org/10.1103/PhysRevB.66.180401

    Article  ADS  Google Scholar 

  13. T. Surungan, Y. Okabe, Kosterlitz-Thouless transition in planar spin models with bond dilution. Phys. Rev. B 71(18), 184438 (2005). https://doi.org/10.1103/PhysRevB.71.184438

    Article  ADS  Google Scholar 

  14. C.M. Lapilli, P. Pfeifer, C. Wexler, Universality away from critical points in two-dimensional phase transitions. Phys. Rev. Lett. 96(14), 140603 (2006). https://doi.org/10.1103/PhysRevLett.96.140603

    Article  ADS  Google Scholar 

  15. S.K. Baek, P. Minnhagen, B.J. Kim, True and quasi-long- range order in the generalized q-state clock model. Phys. Rev. E 80, 060101 (2009). https://doi.org/10.1103/PhysRevE.80.060101

    Article  ADS  Google Scholar 

  16. S.K. Baek, P. Minnhagen, B.J. Kim, Comment on Six-state clock model on the square lattice: fisher zero approach with Wang-Landau sampling. Phys. Rev. E 81, 063101 (2010). https://doi.org/10.1103/PhysRevE.81.063101

    Article  ADS  Google Scholar 

  17. S.K. Baek, P. Minnhagen, Non-Kosterlitz-Thouless transitions for the \(q\)-state clock models. Phys. Rev. E 82, 031102 (2010). https://doi.org/10.1103/PhysRevE.82.031102

    Article  ADS  Google Scholar 

  18. P.HWu. Raymond, V.-C. Lo, H. Huang, Critical behavior of two-dimensional spin systems under the random-bond six-state clock model. J. Appl. Phys. 112, 063924 (2012). https://doi.org/10.1063/1.4754821

    Article  ADS  Google Scholar 

  19. G. Ortiz, E. Cobanera, Z. Nussinov, Dualities and the phase diagram of the p-clock model. Nucl. Phys. B 854(3), 780–814 (2012). https://doi.org/10.1016/j.nuclphysb.2011.09.012

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Kumano, K. Hukushima, Y. Tomita, M. Oshikawa, Response to a twist in systems with \(Z_p\) symmetry: the two- dimensional p-state clock model. Phys. Rev. B 88(10), 104427 (2013). https://doi.org/10.1103/PhysRevB.88.104427

    Article  ADS  Google Scholar 

  21. S. Chatterjee, S. Puri, R. Paul, Ordering kinetics in the q- state clock model: scaling properties and growth laws. Phys. Rev. E 98(3), 032109 (2018). https://doi.org/10.1103/PhysRevE.98.032109

    Article  ADS  Google Scholar 

  22. T. Surungan, S. Masuda, Y. Komura, Y. Okabe, Berezinskii- Kosterlitz-Thouless transition on regular and Villain types of \(q\)- state clock models. J. Phys. A Math. Theor. 52(27), 275002 (2019). https://doi.org/10.1088/1751-8121/ab226d

    Article  ADS  MathSciNet  Google Scholar 

  23. L.M. Tuan, T.T. Long, D.X. Nui, P.T. Minh, N.D.T. Kien, D.X. Viet, Binder ratio in the two-dimensional \(q\)-state clock model. Phys. Rev. E 106, 034138 (2022). https://doi.org/10.1103/PhysRevE.106.034138

    Article  ADS  Google Scholar 

  24. Y. Miyajima, Y. Murata, Y. Tanaka, M. Mochizuki, Machine learning detection of Berezinskii-Kosterlitz-Thouless transitions in \(q\)-state clock models. Phys. Rev. B 104(7), 075114 (2021). https://doi.org/10.1103/PhysRevB.104.075114

    Article  ADS  Google Scholar 

  25. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 058301 (2012). https://doi.org/10.1103/PhysRevLett.108.058301

    Article  ADS  Google Scholar 

  26. J.C. Snyder, M. Rupp, K. Hansen, K.R. Müller, K. Burke, Finding density functionals with machine learning. Phys. Rev. Lett. 108(25), 253002 (2012). https://doi.org/10.1103/PhysRevLett.108.253002

    Article  ADS  Google Scholar 

  27. P. Baldi, P. Sadowski, D. Whiteson, Enhanced Higgs Boson to \(\tau ^+\tau ^-\) Search with deep learning. Phys. Rev. Lett. 114(11), 111801 (2015). https://doi.org/10.1103/PhysRevLett.114.111801

    Article  ADS  Google Scholar 

  28. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  ADS  Google Scholar 

  29. T. Ohtsuki, T. Ohtsuki, Deep learning the quantum phase transitions in random two-dimensional electron systems. J. Phys. Soc. Jpn. 85(12), 123706 (2016). https://doi.org/10.7566/JPSJ.85.123706

    Article  ADS  Google Scholar 

  30. B. Hoyle, Measuring photometric redshifts using galaxy images and deep neural networks. Astron. Comput. 16, 34–40 (2016). https://doi.org/10.1016/j.ascom.2016.03.006

    Article  ADS  Google Scholar 

  31. V.N. Ryzhov, E.E. Tareyeva, Yu.D. Fomin, E.N. Tsiok, Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting. UFN 187(9), 921–951 (2017). https://doi.org/10.3367/UFNe.2017.06.038161

    Article  Google Scholar 

  32. V.N. Ryzhov, E.E. Tareyeva, Yu.D. Fomin, E.N. Tsiok, Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting. Phys. Usp. 60(9), 857–885 (2017). https://doi.org/10.3367/UFNe.2017.06.038161

    Article  ADS  Google Scholar 

  33. J. Carrasquilla, R.G. Melko, Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017). https://doi.org/10.1038/nphys4035

    Article  Google Scholar 

  34. E.P. Van Nieuwenburg, Y.H. Liu, S.D. Huber, Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017). https://doi.org/10.1038/nphys4037

    Article  Google Scholar 

  35. D.L. Deng, X. Li, S.D. Sarma, Machine learning topological states. Phys. Rev. B 96, 195145 (2017). https://doi.org/10.1103/PhysRevB.96.195145

    Article  ADS  Google Scholar 

  36. W. Hu, R.R.P. Singh, R.T. Scalettar, Discovering phases, phase transitions, and crossovers through unsupervised machine learning: a critical examination. Phys. Rev. E 95, 062122 (2017). https://doi.org/10.1103/PhysRevE.95.062122

    Article  ADS  Google Scholar 

  37. C.-D. Li, D.-R. Tan, F.-J. Jiang, Applications of neural networks to the studies of phase transitions of two-dimensional Potts models. Ann. Phys. 391, 312–331 (2018). https://doi.org/10.1016/j.aop.2018.02.018

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Ch’ng, N. Vazquez, E. Khatami, Unsupervised machine learning account of magnetic transitions in the Hubbard model. Phys. Rev. E 97(1), 013306 (2018). https://doi.org/10.1103/PhysRevE.97.013306

    Article  ADS  Google Scholar 

  39. S. Lu, Q. Zhou, Y. Ouyang et al., Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9(1), 3405 (2018). https://doi.org/10.1038/s41467-018-05761-w

    Article  ADS  Google Scholar 

  40. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2

    Article  ADS  Google Scholar 

  41. P.E. Shanahan, A. Trewartha, W. Detmold, Machine learning action parameters in lattice quantum chromodynamics. Phys. Rev. D 97, 094506 (2018). https://doi.org/10.1103/PhysRevD.97.094506

    Article  ADS  Google Scholar 

  42. J.F. Rodriguez-Nieva, M.S. Scheurer, Identifying topological order through unsupervised machine learning. Nat. Phys. 15, 790–795 (2019). https://doi.org/10.1038/s41567-019-0512-x

    Article  Google Scholar 

  43. W. Zhang, J. Liu, T.-C. Wei, Machine learning of phase transitions in the percolation and XY models. Phys. Rev. E 99(3), 032142 (2019). https://doi.org/10.1103/PhysRevE.99.032142

    Article  ADS  MathSciNet  Google Scholar 

  44. D.-R. Tan et al., A comprehensive neural networks study of the phase transitions of Potts model. New J. Phys. 22, 063016 (2020). https://doi.org/10.1088/1367-2630/ab8ab410.1088/1367-2630/ab8ab4

    Article  ADS  MathSciNet  Google Scholar 

  45. D.-R. Tan, F.-J. Jiang, Machine learning phases and criticalities without using real data for training. Phys. Rev. B 102(22), 224434 (2020). https://doi.org/10.1103/PhysRevB.102.224434

    Article  ADS  Google Scholar 

  46. G. Situ, J.W. Fleischer, Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid. Nat. Photonics 14, 517–522 (2020). https://doi.org/10.1038/s41566-020-0636-7

    Article  Google Scholar 

  47. A.J. Larkoski, I. Moult, B. Nachman, Jet substructure at the large hadron collider: a review of recent advances in theory and machine learning. Phys. Rep. 841, 1–63 (2020). https://doi.org/10.1016/j.physrep.2019.11.001

    Article  ADS  Google Scholar 

  48. G. Aad et al., [ATLAS], Dijet resonance search with weak supervision using \(\sqrt{s}=13\) TeV \(pp\) collisions in the ATLAS detector. Phys. Rev. Lett. 125(13), 131801 (2020). https://doi.org/10.1103/PhysRevLett.125.131801

    Article  ADS  Google Scholar 

  49. K.A. Nicoli, C.J. Anders, L. Funcke, T. Hartung, K. Jansen, P. Kessel, S. Nakajima, P. Stornati, Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models. Phys. Rev. Lett. 126(3), 032001 (2021). https://doi.org/10.1103/PhysRevLett.126.032001

    Article  ADS  MathSciNet  Google Scholar 

  50. D.-R. Tan, J.-H. Peng, Y.-H. Tseng, F.-J. Jiang, A universal neural network for learning phases. Eur. Phys. J. Plus 136(11), 1116 (2021). https://doi.org/10.1140/epjp/s13360-021-02121-4

    Article  Google Scholar 

  51. Y.H. Tseng, F.J. Jiang, C.Y. Huang, A universal training scheme and the resulting universality for machine learning phases. Prog. Theor. Exp. Phys. 2023, 013A03 (2023). https://doi.org/10.1093/ptep/ptac173

    Article  Google Scholar 

  52. Ali Forooghi, Nasim Fallahi, Akbar Alibeigloo, Hosein Forooghi, Saber Rezaey, Static and thermal instability analysis of embedded functionally graded carbon nanotube-reinforced composite plates based on HSDT via GDQM and validated modeling by neural network. Mech. Based Des. Struct. Mach. 51(12), 7149–7182 (2023). https://doi.org/10.1080/15397734.2022.2094407

    Article  Google Scholar 

  53. O. Azarniya, A. Forooghi, M.V. Bidhendi, A. Zangoei, S. Naska, Exploring buckling and post-buckling behavior of incompressible hyperelastic beams through innovative experimental and computational approaches. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2023.2242473

    Article  Google Scholar 

  54. O. Azarniya, G. Rahimi, A. Forooghi, Large deformation analysis of a hyperplastic beam using experimental/FEM/meshless collocation method. Waves Random Complex Med. (2023). https://doi.org/10.1080/17455030.2023.2184645

    Article  Google Scholar 

  55. J.H. Peng, Y.H. Tseng, F.J. Jiang, Machine learning phases of an Abelian gauge theory. Prog. Theor. Exp. Phys. 2023, 073A03 (2023). https://doi.org/10.1093/ptep/ptad096

    Article  Google Scholar 

  56. Y.-H. Tseng, F.-J. Jiang, Berezinskii-Kosterlitz-Thouless transition-a universal neural network study with benchmarks. Results Phys. 33, 105134 (2022). https://doi.org/10.1016/j.rinp.2021.105134

    Article  Google Scholar 

  57. Y.-H. Tseng, F.-J. Jiang, Results Phys. (in press)

  58. https://keras.io

  59. https://www.tensorflow.org

  60. U. Wolff, Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62(361), 361–364 (1989). https://doi.org/10.1103/PhysRevLett.62.361

    Article  ADS  Google Scholar 

  61. D.R. Nelson, J.M. Kosterlitz, Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39(1201), 1201–1205 (1977). https://doi.org/10.1103/PhysRevLett.39.1201

    Article  ADS  Google Scholar 

  62. G. Palma, T. Meyer, R. Labbé, Finite size scaling in the two-dimensional \(XY\) model and generalized universality. Phys. Rev. E 66(026108), 1–5 (2002). https://doi.org/10.1103/PhysRevE.66.026108

    Article  Google Scholar 

  63. K. Harada, N. Kawashima, Universal jump in the helicity modulus of the two-dimensional quantum \(XY\) model. Phys. Rev. B 55, R11949 (1997). https://doi.org/10.1103/PhysRevB.55.R11949

    Article  ADS  Google Scholar 

  64. B.G. Bravo, B.D.J. Hernández, W. Bietenholz, Semi-vortices and cluster-vorticity: new concepts in the Berezinskii-Kosterlitz-Thouless phase transition. Supl. Rev. Mex. Fis. 3, 020724 (2022). https://doi.org/10.31349/SuplRevMexFis.3.020724

    Article  Google Scholar 

  65. M. Greven, R.J. Birgeneau, U.-J. Wiese, Monte Carlo study of correlations in quantum spin ladders. Phys. Rev. Lett. 77, 1865–1868 (1996). https://doi.org/10.1103/PhysRevLett.77.1865

    Article  ADS  Google Scholar 

  66. B.B. Beard, A. Cuccoli, R. Vaia, P. Verrucchi, Quantum two-dimensional Heisenberg antiferromagnet: bridging the gap between field-theoretical and semiclassical approaches. Phys. Rev. B 68, 104406 (2003). https://doi.org/10.1103/PhysRevB.68.104406

    Article  ADS  Google Scholar 

  67. K.H. Höglund, A.W. Sandvik, Susceptibility of the 2D spin-1/2 Heisenberg antiferromagnet with an impurity. Phys. Rev. Lett. 91, 077204 (2003). https://doi.org/10.1103/PhysRevLett.91.077204

    Article  ADS  Google Scholar 

  68. A.W. Sandvik, Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: evidence for logarithmic corrections to scaling. Phys. Rev. Lett. 104, 177201 (2010). https://doi.org/10.1103/PhysRevLett.104.177201

    Article  ADS  Google Scholar 

  69. C. Alexandrou, A. Athenodorou, C. Chrysostomou, S. Paul, The critical temperature of the 2D-using model through deep learning autoencoders. Eur. Phys. J. B 93, 226 (2020). https://doi.org/10.1140/epjb/e2020-100506-5

    Article  ADS  Google Scholar 

  70. G.A. Canova, Y. Levin, J.J. Arenzon, Competing nematic interactions in a generalized \(XY\) model in two and three dimensions. Phys. Rev. E 94(032140), 1–12 (2016). https://doi.org/10.1103/PhysRevE.94.032140

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Partial support from National Science and Technology Council (NSTC) of Taiwan (MOST 110-2112-M-003-015 and MOST 111-2112-M-003–011) is acknowledged. A preprint version has been appeared in arXiv (arXiv:2303.00439).

Author information

Authors and Affiliations

Authors

Contributions

F-JJ proposed and supervised the project, and wrote up the manuscript. Y-HT conducted the calculations and analyzed the data.

Corresponding author

Correspondence to Fu-Jiun Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, YH., Jiang, FJ. Detection of Berezinskii–Kosterlitz–Thouless transitions for the two-dimensional q-state clock models with neural networks. Eur. Phys. J. Plus 138, 1118 (2023). https://doi.org/10.1140/epjp/s13360-023-04741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04741-4

Navigation