Skip to main content
Log in

Effect of dark matter haloes on the orbital and escape dynamics of barred galaxies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work examines the effect of dark matter haloes on the fate of bar-driven escaping patterns in disc galaxies. In this study, a three-dimensional gravitational model with a strong bar profile has been considered and examined separately for the following dark halo profiles: NFW and oblate. These profiles are chosen to model massive and low-mass disc galaxies, respectively. In both cases, a bar-driven escape mechanism has been identified near the saddle points of the phase space, which correspond to the bar ends. This bar-driven escaping motion has been analysed via orbital and Poincaré surface section maps. Moreover, with a choice of initial condition in the vicinity of escape saddles, the variation of its maximal Lyapunov exponent value against the dark halo parameters such as mass, size, circular velocity and nature has been studied. This helps to determine the sensitivity of the bar-driven escaping patterns to the dark halo parameters. Our results state that NFW dark haloes support the formation of bar-driven grand design spiral arms (as we have seen in massive disc galaxies) only if there is an excess energy generation source other than the baryonic feedback generated due to the accretion of the central supermassive black hole. In this regard, active galaxies might be one of the potential contenders where NFW profiles may be a better fit for modelling dark haloes. On the other hand, oblate dark haloes support the formation of bar-driven less prominent spiral arms in low-mass disc galaxies like S0, ultra-compact dwarfs, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data Availability Statement

The manuscript does not have any data attached to it.

References

  1. P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, J.G. Bartlett, N. Bartolo et al., Planck 2015 results xiii cosmological parameters. A &A 594, 13 (2016). https://doi.org/10.1051/0004-6361/201525830

    Article  Google Scholar 

  2. J.C. Kapteyn, First attempt at a theory of the arrangement and motion of the sidereal system. ApJ 55, 302–328 (1922). https://doi.org/10.1086/142670

    Article  ADS  Google Scholar 

  3. K.C. Freeman, On the disks of spiral and s0 galaxies. ApJ 160, 811–830 (1970). https://doi.org/10.1086/150474

    Article  ADS  Google Scholar 

  4. V.C. Rubin, W.K. Ford Jr., N. Thonnard, Rotational properties of 21 sc galaxies with a large range of luminosities and radii, from ngc 4605 (r = 4 kpc) to ugc 2885 (r = 122 kpc). ApJ 238, 471–478 (1980). https://doi.org/10.1086/158003

    Article  ADS  Google Scholar 

  5. F. Zwicky, Republication of: the redshift of extragalactic nebulae. Gen. Relativ. Gravit. 41, 207–224 (2009). https://doi.org/10.1007/s10714-008-0707-4

    Article  ADS  Google Scholar 

  6. A. Klypin, H. Zhao, R.S. Somerville, \(\lambda\)cdm-based models for the milky way and m31. i. dynamical models. ApJ 573, 597–613 (2002). https://doi.org/10.1086/340656

    Article  ADS  Google Scholar 

  7. P. Bhattacharjee, S. Chaudhury, S. Kundu, Rotation curve of the milky way out to \(\sim\) 200 kpc. ApJ 785, 63 (2014). https://doi.org/10.1088/0004-637X/785/1/63

    Article  ADS  Google Scholar 

  8. Y. Huang, X.-W. Liu, H.-B. Yuan, M.-S. Xiang, H.-W. Zhang, B.-Q. Chen, J.-J. Ren, C. Wang, Y. Zhang, Y.-H. Hou et al., The milky way’s rotation curve out to 100 kpc and its constraint on the galactic mass distribution. MNRAS 463, 2623–2639 (2016). https://doi.org/10.1093/mnras/stw2096

    Article  ADS  Google Scholar 

  9. W.J.G. De Blok, A. Bosma, High-resolution rotation curves of low surface brightness galaxies. A &A 385, 816–846 (2002). https://doi.org/10.1051/0004-6361:20020080

    Article  ADS  Google Scholar 

  10. J.D. Simon, A.D. Bolatto, A. Leroy, L. Blitz, E.L. Gates, High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. ApJ 621, 757–776 (2005). https://doi.org/10.1086/427684

    Article  ADS  Google Scholar 

  11. R.A. Swaters, R. Sancisi, T.S. Van Albada, J.M. Van der Hulst, Are dwarf galaxies dominated by dark matter? ApJ 729, 118 (2011). https://doi.org/10.1088/0004-637X/729/2/118

    Article  ADS  Google Scholar 

  12. M.D. Weinberg, N. Katz, Bar-driven dark halo evolution: a resolution of the cusp-core controversy. ApJ 580, 627–633 (2002). https://doi.org/10.1086/343847

    Article  ADS  Google Scholar 

  13. P. Karmakar, T. Chattopadhyay, A.K. Chattopadhyay, Study of the nature of dark matter in halos of dwarf galaxies. Ap &SS 358, 46 (2015). https://doi.org/10.1007/s10509-015-2444-y

    Article  ADS  Google Scholar 

  14. P. Salucci, The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 27, 2 (2019). https://doi.org/10.1007/s00159-018-0113-1

    Article  ADS  Google Scholar 

  15. A.C.R. Thob, R.A. Crain, I.G. McCarthy, M. Schaller, C.D.P. Lagos, J. Schaye, G.J.J. Talens, P.A. James, T. Theuns, R.G. Bower, The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in eagle. MNRAS 485, 972–987 (2019). https://doi.org/10.1093/mnras/stz448

    Article  ADS  Google Scholar 

  16. B. Moore, F. Governato, T. Quinn, J. Stadel, G. Lake, Resolving the structure of cold dark matter halos. ApJ 499, 5–8 (1998). https://doi.org/10.1086/311333

    Article  ADS  Google Scholar 

  17. N. Yoshida, V. Springel, S.D.M. White, G. Tormen, Collisional dark matter and the structure of dark halos. ApJ 535, 103–106 (2000). https://doi.org/10.1086/312707

    Article  ADS  Google Scholar 

  18. O. Hahn, T. Abel, R. Kaehler, A new approach to simulating collisionless dark matter fluids. MNRAS 434, 1171–1191 (2013). https://doi.org/10.1093/mnras/stt1061

    Article  ADS  Google Scholar 

  19. M.S. Fischer, M. Brüggen, K. Schmidt-Hoberg, K. Dolag, F. Kahlhoefer, A. Ragagnin, A. Robertson, N-body simulations of dark matter with frequent self-interactions. MNRAS 505, 851–868 (2021). https://doi.org/10.1093/mnras/stab1198

    Article  ADS  Google Scholar 

  20. J.F. Navarro, C.S. Frenk, S.D.M. White, The structure of cold dark matter halos. ApJ 462, 563–575 (1996). https://doi.org/10.1086/177173

    Article  ADS  Google Scholar 

  21. K. Umetsu, T. Broadhurst, A. Zitrin, E. Medezinski, D. Coe, M. Postman, A precise cluster mass profile averaged from the highest-quality lensing data. ApJ 738, 41 (2011). https://doi.org/10.1088/0004-637X/738/1/41

    Article  ADS  Google Scholar 

  22. J. Einasto, On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters. Trudy Inst. Astro z. Alma-Ata. 5, 87–100 (1965)

    ADS  Google Scholar 

  23. L.J. Beraldo e Silva, M. Lima, L. Sodré Jr., Testing phenomenological and theoretical models of dark matter density profiles with galaxy clusters. MNRAS 436, 2616–2624 (2013). https://doi.org/10.1093/mnras/stt1761

  24. Y.P. Jing, Y. Suto, The density profiles of the dark matter halo are not universal. ApJ 529, 69–72 (2000). https://doi.org/10.1086/312463

    Article  Google Scholar 

  25. W.J.G. De Blok, The core-cusp problem. Adv. Astron. 2010, 789293 (2010). https://doi.org/10.1155/2010/789293

    Article  ADS  Google Scholar 

  26. G. Ogiya, M. Mori, The core-cusp problem in cold dark matter halos and supernova feedback: effects of mass loss. ApJL 736, 2 (2011). https://doi.org/10.1088/2041-8205/736/1/L2

    Article  ADS  Google Scholar 

  27. A. Del Popolo, M. Le Delliou, Review of solutions to the cusp-core problem of the \(\lambda\)cdm model. Galaxies 9, 123 (2021). https://doi.org/10.3390/galaxies9040123

    Article  ADS  Google Scholar 

  28. A. Pontzen, F. Governato, How supernova feedback turns dark matter cusps into cores. MNRAS 421, 3464–3471 (2012). https://doi.org/10.1111/j.1365-2966.2012.20571.x

    Article  ADS  Google Scholar 

  29. E.E. Zotos, Order and chaos in a galactic model with a strong nuclear bar. Res. Astron. Astrophys. 12, 500–512 (2012). https://doi.org/10.1088/1674-4527/12/5/003

    Article  ADS  Google Scholar 

  30. J. Aguirre, J.C. Vallejo, M.A.F. Sanjuán, Wada basins and chaotic invariant sets in the hénon-heiles system. Phys. Rev. E 64, 066208 (2001). https://doi.org/10.1103/PhysRevE.64.066208

    Article  ADS  Google Scholar 

  31. J.F. Navarro, J. Henrard, Spiral windows for escaping stars. A &A 369, 1112–1121 (2001). https://doi.org/10.1051/0004-6361:20010166

    Article  ADS  Google Scholar 

  32. M. Romero-Gómez, J.J. Masdemont, E. Athanassoula, C. García-Gómez, The origin of rr\(_1\) ring structures in barred galaxies. A &A 453, 39–45 (2006). https://doi.org/10.1051/0004-6361:20054653

    Article  ADS  Google Scholar 

  33. N. Voglis, P. Tsoutsis, C. Efthymiopoulos, Invariant manifolds, phase correlations of chaotic orbits and the spiral structure of galaxies. MNRAS 373, 280–294 (2006). https://doi.org/10.1111/j.1365-2966.2006.11021.x

    Article  ADS  Google Scholar 

  34. M. Romero-Gómez, E. Athanassoula, J.J. Masdemont, C. García-Gómez, The formation of spiral arms and rings in barred galaxies. A &A 472, 63–75 (2007). https://doi.org/10.1051/0004-6361:20077504

    Article  ADS  Google Scholar 

  35. E.E. Zotos, A new dynamical model for the study of galactic structure. New Astron. 16, 391–401 (2011). https://doi.org/10.1016/j.newast.2011.02.003

    Article  ADS  Google Scholar 

  36. C. Jung, E.E. Zotos, Orbital and escape dynamics in barred galaxies - i. the 2d system. MNRAS 457, 2583–2603 (2016). https://doi.org/10.1093/mnras/stw170

    Article  ADS  Google Scholar 

  37. P. Sánchez-Martín, M. Romero-Gómez, J.J. Masdemont, Warp evidence in precessing galactic bar models. A &A 588, 76 (2016). https://doi.org/10.1051/0004-6361/201527302

    Article  Google Scholar 

  38. C. Efthymiopoulos, P. Kyziropoulos, R. Páez, K. Zouloumi, G.A. Gravvanis, Manifold spirals, disc-halo interactions, and the secular evolution in N-body models of barred galaxies. MNRAS 484, 1487–1505 (2019). https://doi.org/10.1093/mnras/stz035

    Article  ADS  Google Scholar 

  39. H.I. Alrebdi, F.L. Dubeibe, E.E. Zotos, Orbital dynamics in a triaxial barred galaxy model. i. the 2d system. ApJ 920, 61 (2021). https://doi.org/10.3847/1538-4357/ac15f2

    Article  ADS  Google Scholar 

  40. H.I. Alrebdi, E.E. Zotos, Chaos and order in a local barred galaxy model. Astron. Nachr. 343, 20220025 (2022). https://doi.org/10.1002/asna.20220025

    Article  ADS  Google Scholar 

  41. M.S. Suraj, S. Alhowaity, R. Aggarwal, M.C. Asique, Orbit classification in the restricted three-body problem with the effect of three-body interaction. New Astron. 98, 101894 (2023). https://doi.org/10.1016/j.newast.2022.101894

    Article  Google Scholar 

  42. D. Mondal, T. Chattopadhyay, Fate of escaping orbits in barred galaxies. In: Proc. Int. Astron. Union, vol. 16(S362), pp. 122–127 (2020). https://doi.org/10.1017/S1743921322001338

  43. D. Mondal, T. Chattopadhyay, Role of galactic bars in the formation of spiral arms: a study through orbital and escape dynamics-i. Celest. Mech. Dyn. Astron. 133, 43 (2021). https://doi.org/10.1007/s10569-021-10037-5

    Article  ADS  MathSciNet  Google Scholar 

  44. V.P. Debattista, J.A. Sellwood, Constraints from dynamical friction on the dark matter content of barred galaxies. ApJ 543, 704–721 (2000). https://doi.org/10.1086/317148

    Article  ADS  Google Scholar 

  45. J. Binney, S. Tremaine, Galactic Dynamics, 2nd edn. (Princeton Univ. Press, New Jersey, 2008)

    Book  Google Scholar 

  46. S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering, 1st edn. Perseus Books, Reading (1994)

  47. B. Paczyńsky, P.J. Wiita, Thick accretion disks and supercritical luminosities. A &A 88, 23–31 (1980)

    ADS  MathSciNet  Google Scholar 

  48. M.A. Abramowicz, The paczyński-wiita potential. a step-by-step “derivation.” A &A 500, 213–214 (2009). https://doi.org/10.1051/0004-6361/200912155

    Article  ADS  Google Scholar 

  49. H.C. Plummer, On the problem of distribution in globular star clusters. MNRAS 71, 460–470 (1911). https://doi.org/10.1093/mnras/71.5.460

    Article  ADS  Google Scholar 

  50. M. Miyamoto, R. Nagai, Three-dimensional models for the distribution of mass in galaxies. PASJ 27, 533–543 (1975)

    ADS  Google Scholar 

  51. E.E. Zotos, F.L. Dubeibe, A.F. Steklain, T. Saeed, Orbit classification in a disk galaxy model with a pseudo-newtonian central black hole. A &A 643, 33 (2020). https://doi.org/10.1051/0004-6361/202038885

    Article  Google Scholar 

  52. S. Sharma, D. Stello, J. Bland-Hawthorn, M.R. Hayden, J.C. Zinn, T. Kallinger, M. Hon, M. Asplund, S. Buder, G.M. De Silva et al., The k2-hermes survey: age and metallicity of the thick disc. MNRAS 490, 5335–5352 (2019). https://doi.org/10.1093/mnras/stz2861

    Article  ADS  Google Scholar 

  53. G. Contopoulos, M. Harsoula, Chaotic spiral galaxies. Celest. Mech. Dyn. Astron. 113, 81–94 (2012). https://doi.org/10.1007/s10569-011-9378-7

    Article  ADS  Google Scholar 

  54. M. Mestre, C. Llinares, D.D. Carpintero, Effects of chaos on the detectability of stellar streams. MNRAS 492, 4398–4408 (2020). https://doi.org/10.1093/mnras/stz3505

    Article  ADS  Google Scholar 

  55. B. Basu, T. Kanjilal, Explosion-triggered star formation in the central region of the galaxy. Ap &SS 152, 203–214 (1989). https://doi.org/10.1007/BF00636306

    Article  ADS  Google Scholar 

  56. G. Efstathiou, A model of supernova feedback in galaxy formation. MNRAS 317, 697–719 (2000). https://doi.org/10.1046/j.1365-8711.2000.03665.x

    Article  ADS  Google Scholar 

  57. B.A. Terrazas, E.F. Bell, J. Woo, B.M.B. Henriques, Supermassive black holes as the regulators of star formation in central galaxies. ApJ 844, 170 (2017). https://doi.org/10.3847/1538-4357/aa7d07

    Article  ADS  Google Scholar 

  58. D. Mondal, T. Chattopadhyay, Star formation under explosion mechanism in a magnetized medium. Bulg. Astron. J. 31, 16–29 (2019)

    Google Scholar 

  59. M. Donahue, G.M. Voit, Baryon cycles in the biggest galaxies. Phys. Rep. 973, 1–109 (2022). https://doi.org/10.1016/j.physrep.2022.04.005

    Article  ADS  Google Scholar 

  60. M.S. Seigar, D. Kennefick, J. Kennefick, C.H.S. Lacy, Discovery of a relationship between spiral arm morphology and supermassive black hole mass in disk galaxies. ApJ 678, 93–96 (2008). https://doi.org/10.1086/588727

    Article  ADS  Google Scholar 

  61. J.C. Berrier, B.L. Davis, D. Kennefick, J.D. Kennefick, M.S. Seigar, R.S. Barrows, M. Hartley, D. Shields, M.C. Bentz, C.H.S. Lacy, Further evidence for a supermassive black hole mass-pitch angle relation. ApJ 769, 132 (2013). https://doi.org/10.1088/0004-637X/769/2/132

    Article  ADS  Google Scholar 

  62. Study of the relation between the spiral arm pitch angle and the kinetic energy of random motions of the host spiral galaxies, a

  63. A.A. Dutton, A.V. Macciò, A. Dekel, L. Wang, G. Stinson, A. Obreja, A. Di Cintio, C. Brook, T. Buck, X. Kang, Nihao ix: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes. MNRAS 461, 2658–2675 (2016). https://doi.org/10.1093/mnras/stw1537

    Article  ADS  Google Scholar 

  64. S. Mashchenko, H.M.P. Couchman, J. Wadsley, The removal of cusps from galaxy centres by stellar feedback in the early universe. Nature 442, 539–542 (2006). https://doi.org/10.1038/nature04944

    Article  ADS  Google Scholar 

  65. I. Shlosman, J. Frank, M.C. Begelman, Bars within bars: a mechanism for fuelling active galactic nuclei. Nature 338, 45–47 (1989). https://doi.org/10.1038/338045a0

    Article  ADS  Google Scholar 

  66. I. Shlosman, M.C. Begelman, J. Frank, The fuelling of active galactic nuclei. Nature 345, 679–686 (1990). https://doi.org/10.1038/345679a0

    Article  ADS  Google Scholar 

  67. R.A. Flores, J.R. Primack, Observational and theoretical constraints on singular dark matter halos. ApJ 427, 1–4 (1994). https://doi.org/10.1086/187350

    Article  Google Scholar 

  68. A.C. Seth, R. Van Den Bosch, S. Mieske, H. Baumgardt, S.J.M.D. Brok, N. Neumayer, I. Chilingarian, M. Hilker, R. McDermid, L. Spitler, A supermassive black hole in an ultra-compact dwarf galaxy. Nature 513, 398–400 (2014). https://doi.org/10.1038/nature13762

    Article  ADS  Google Scholar 

  69. T.A. Davis, M. Bureau, K. Onishi, F. van de Voort, M. Cappellari, S. Iguchi, L. Liu, E.V. North, M. Sarzi, M.D. Smith, Wisdom project - iii. molecular gas measurement of the supermassive black hole mass in the barred lenticular galaxy ngc4429. MNRAS 473, 3818–3834 (2018). https://doi.org/10.1093/mnras/stx2600

    Article  ADS  Google Scholar 

  70. C.A. Roberts, M.C. Bentz, E. Vasiliev, M. Valluri, C.A. Onken, The black hole mass of ngc 4151 from stellar dynamical modeling. ApJ 916, 25 (2021). https://doi.org/10.3847/1538-4357/ac05b6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work is supported by a Senior Research Fellowship (ID - 1263/(CSIRNETJUNE2019)) of the University Grants Commission of India, provided to the author DM. Moreover, we would also like to thank Ms. Suparna Sau (Senior Research Fellow, Department of Applied Mathematics, University of Calcutta) for several productive discussions over the MATLAB graphics in this article. We also thank the anonymous referee for their insightful remarks and ideas, which significantly improved the content of the work. This work is dedicated to the memory of co-author TC (Prof. Tanuka Chattopadhyay, Department of Applied Mathematics, University of Calcutta), who died during the revision process of this work on 16th October 2023.

Funding

The author DM was supported by a Senior Research Fellowship grant from the University Grants Commission (UGC), India (ID - 1263/(CSIRNETJUNE2019)).

Author information

Authors and Affiliations

Authors

Contributions

Both DM and TC had equally contributed to conceptualization, formal analysis and writing.

Corresponding author

Correspondence to Debasish Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Tanuka Chattopadhyay: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Chattopadhyay, T. Effect of dark matter haloes on the orbital and escape dynamics of barred galaxies. Eur. Phys. J. Plus 138, 1144 (2023). https://doi.org/10.1140/epjp/s13360-023-04715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04715-6

Navigation