Skip to main content
Log in

Bifurcation analysis of calcium dynamics in nerve cell

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Communication between neurons and astrocytes involves numerous significant chemical transmissions. It has been established that \(\textrm{Ca}^{2+}\) signaling is among the most adaptable second mediators in the majority of cell morphology and diverse cellular processes are regulated by complicated dynamical behaviors that range from random picking to well-ordered oscillations and periodic waves. Including muscular contraction, gene transcription, cell death, and neural activity. A significant regulator of intracellular \(\textrm{Ca}^{2+}\) dynamics, including the voltage-gated \(\textrm{Ca}^{2+}\) channels, the store-operated \(\textrm{Ca}^{2+}\) channel (SOCC), and the receptor-operated \(\textrm{Ca}^{2+}\) channel (ROCC), is the rate at which \(\textrm{Ca}^{2+}\) enters cells through plasma membrane cells. In order to analyze the model’s dynamic behavior, we have solved the neuron–astrocyte model and conducted a bifurcation analysis. The consequences of changing certain parameters, specifically the bifurcation of numerous limit cycles, on the dynamics of \(\textrm{Ca}^{2+}\) with changes in the signaling mechanism for distinct flows through the ER. Multiple limit cycle bifurcation, which may result in complicated dynamical behaviors, arises from the generalized coupling of mitochondria and NCX. It is further demonstrated that the parameter range for stable oscillations is determined by the fluctuation of the maximum flows for various calcium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The article contains all the data that were used in this study, and it includes the appropriate citations for the original sources.

References

  1. S. Nadkarni, P. Jung, Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 26(91), 268101 (2003)

    Article  ADS  Google Scholar 

  2. J. Li, W. Rong, J. Lei, Y. Wu, Astrocytic gliotransmitter: diffusion dynamics and induction of information processing on tripartite synapses. Int. J. Bifurc. Chaos 26(08), 1650138 (2016)

    Article  MathSciNet  Google Scholar 

  3. G. Sichili, L. Galluccio, Analysis of a stochastic noisy communication channel in a tripartite synapse with astrocytes. 97–103 (2023). https://doi.org/10.1145/3576781.3608720

  4. S. Stasenko, V. Kazantsev, Astrocyte regulation of non-periodic bursting activity of a spiking neural network. Procedia Comput. Sci. 212, 243–253 (2022). https://doi.org/10.1016/j.procs.2022.11.008

    Article  Google Scholar 

  5. S. Gordleeva, S. Stasenko, A. Semyanov, A. Dityatev, V. Kazantsev, Bi-directional astrocytic regulation of neuronal activity within a network. Front. Comput. Neurosci. 6, 92 (2012). https://doi.org/10.3389/fncom.2012.00092

    Article  Google Scholar 

  6. V. Parpura, P. Haydon, From the cover: physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl. Acad. Sci. USA 97, 8629–34 (2000). https://doi.org/10.1073/pnas.97.15.8629

    Article  ADS  Google Scholar 

  7. Q.S. Liu, Q. Xu, G. Arcuino, J. Kang, M. Nedergaard, Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl. Acad. Sci. USA 101(9), 3172–3177 (2004). https://doi.org/10.1073/pnas.0306731101

    Article  ADS  Google Scholar 

  8. V. Vladislav, B.J. Eshel, L. Herbert, The astrocyte as a gatekeeper of synaptic information transfer. Neuronal Comput. (2007). https://doi.org/10.1162/neco.2007.19.2.303

    Article  Google Scholar 

  9. T. Shivendra, P. Vladimir, A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative frame work. Front. Comput. Neurosci. 7, 145 (2013). https://doi.org/10.3389/fncom.2013.00145

    Article  Google Scholar 

  10. O. Yoshitaka, F. Jens, M.D. Fumikazu, H. Swen, Respiratory calcium fluctuations in low-frequency oscillating astrocytes in the pre-Bötzinger complex. Respir. Physiol. Neurobiol. 226, 11–17 (2016)

    Article  Google Scholar 

  11. S. Nadkarni, P. Jung, Modeling synaptic transmission of the tripartite synapse. Phys. Biol. 4, 1–9 (2017)

    Article  ADS  Google Scholar 

  12. J. Keener, J. Sneyd, Mathematical Physiology I: Cellular Physiology, 2nd edn. (Springer Science Business Media, LLC, 2009)

    Book  Google Scholar 

  13. A. Paolo, F. Leone, P. Davide, The influence of the astrocyte field on neuronal dynamics and synchronization. J. Biol. Phys. 35, 413–423 (2009)

    Article  Google Scholar 

  14. N. Soheila, F. Karim, A. Mahmood, K. Ehsan, A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Neural Netw. 66, 79–90 (2015)

    Article  Google Scholar 

  15. M. De Pittà, N. Brunel, Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast. (2016). https://doi.org/10.1155/2016/7607924

    Article  Google Scholar 

  16. J. Li, R. Wang, M. Du, T. Jun, Y. Wu, Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block. Chaos Solitons Fractals 91, 702–708 (2016)

    Article  ADS  Google Scholar 

  17. T. Höfer, L. Venance, C. Giaume, Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. Neurosci. 22(12), 4850–4859 (2002)

    Article  Google Scholar 

  18. A.M. Francesco, D. Mauro, G. Federico, M. Bruno, P.C. Isaac, M. Enzo, M. De Andrea, Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective. BMC Syst. Biol. 7(103), 1–14 (2013)

    Google Scholar 

  19. H. Joshi, M. Yavuz, S. Townley, B. Jha, Stability analysis of a non-singular fractional-order COVID-19 model with nonlinear incidence and treatment rate stability. Physica Scripta (2023). https://doi.org/10.1088/1402-4896/acbe7a

    Article  Google Scholar 

  20. H. Jethanandani, A. Jha, Calcium dynamics with the effects of gliotransmitter on neuron-astrocytes coupling. In: P. Srivastava, M.L. Thivagar, G.I. Oros, C.C. Tan, (eds) Mathematical and Computational Intelligence to Socio-scientific Analytics and Applications. Lecture Notes in Networks and Systems, vol 518. Springer, Singapore (2022)

  21. A. Pawar, K. Pardasani, Simulation of disturbances in interdependent calcium and \(\beta \)-amyloid dynamics in the nerve cell. Eur. Phys. J. Plus 137, 1–23 (2022). https://doi.org/10.1140/epjp/s13360-022-03164-x

    Article  Google Scholar 

  22. V.H. Vatsal, B. Jha, T. Singh, To study the effect of ER flux with buffer on the neuronal calcium. Eur. Phys. J. Plus 138, 1–14 (2023). https://doi.org/10.1140/epjp/s13360-023-04077-z

    Article  Google Scholar 

  23. H. Joshi, B. Jha, 2D memory-based mathematical analysis for the combined impact of calcium influx and efflux on nerve cells. Comput. Math. Appl. 134, 33–44 (2023). https://doi.org/10.1016/j.camwa.2022.12.016

    Article  MathSciNet  Google Scholar 

  24. A. Jha, N. Adlakha, Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER leak and serca. Int. J. Biomath. 8, 1550002 (2014). https://doi.org/10.1142/S1793524515500023

    Article  Google Scholar 

  25. V. Mishra, N. Adlakha, Spatio temporal interdependent calcium and buffer dynamics regulating DAG in a hepatocyte cell due to obesity. J. Bioenerg. Biomembr. 55, 1–18 (2023). https://doi.org/10.1007/s10863-023-09973-8

    Article  Google Scholar 

  26. H. Joshi, B. Jha, D. Dave, Mathematical model to study the effect of mitochondria on Ca2+ diffusion in Parkinsonic nerve cells. AIP Conf. Proc. 1975, 030013 (2018). https://doi.org/10.1063/1.5042183

    Article  Google Scholar 

  27. M.E. Hamby, M.V. Sofroniew, Reactive astrocytes as therapeutic targets for CNS disorders. J. Am. Soc. Exp. NeuroTherapeutics 7, 494–506 (2010)

    Article  Google Scholar 

  28. M. Tiina, H. Riikka, L. Marja-Leena, Reproducibility and comparability of computational models for astrocyte calcium excitability computational neuroscience. Front. Neuroinform. 11, 11 (2017). https://doi.org/10.3389/fninf.2017.0001

    Article  Google Scholar 

  29. V.P. Evgeniya, I.K. Alena, V. Sergey Stasenko, G. Yu Susanna, A.L. Ivan, B. Viktor, Kazantsev neuronal synchronization enhanced by neuron-astrocyte interaction. Nonlinear Dyn. 97, 647–662 (2019)

    Article  Google Scholar 

  30. F. Farnaz, A. Fatemeh, A. Mahmood, L.-B. Bernabe, A neuromorphic digital circuit for neuronal information encoding using astrocytic calcium oscillations. Front. Neurosci. 13, 998 (2019)

    Article  Google Scholar 

  31. J.J. Wade, L.J. McDaid, J. Harkin, V. Crunelli, J.A.S. Kelso, Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PloS ONE 6(12), e29445 (2011)

    Article  ADS  Google Scholar 

  32. L. Kerstin, S. Eero, L. Jules, L.D.G. Antonio, B. Hugues, A. Jari, K. Hyttinen, A computational model of interactions between neuronal and astrocytic networks: the role of astrocytes in the stability of the neuronal firing rate. Front. Comput. Neurosci. 13, 92 (2020)

    Article  Google Scholar 

  33. J. Wade, J. Harkin, S. Kelso, V. Crunelli, Self-repair in a bidirectionally coupled astrocyte-neuron(AN) system based on retrograde signalling. Front. Comput. Neurosci. 6(76), 26578 (2012)

    Google Scholar 

  34. G. Vladimir, Z.L. Ann, K. Ursula, O. Lars, M. Marko. Folke, Mitochondria regulate the amplitude of simple and complex calcium oscillations. Biophys. Chem. 94, 59–74 (2001)

    Article  Google Scholar 

  35. M. Kalia, H.G.E. Meijer, S.A. van Gils, M.J.A.M. van Putten, C.R. Rose, Ion dynamics at the energy-deprived tripartite synapse. PLoS Comput. Biol. 17(6), e1009019 (2021). https://doi.org/10.1371/journal.pcbi.1009019

    Article  Google Scholar 

  36. M. Marko, H. Thomas, B. Milan, H. Reinhart, Complex calcium oscillations and the role of mitochondria and cytosolic proteins. BioSystems 57, 75–86 (2000)

    Article  Google Scholar 

  37. P. Martin, A.N. Barbara, H. Markus, R. Heiko, Interplay of channels, pumps and organelle location in calcium microdomain formation. New J. Phys. 15, 055022 (2013)

    Article  Google Scholar 

  38. F. Martin, B.M. Or-Guil, M. Bar, Dispersion gap and localized spiralwaves in a model for intracellular Ca21 dynamics. Phys. Rev. Lett. 84(20), 4753 (2000)

    Article  ADS  Google Scholar 

  39. T. Manninen, J. Acimovic, M.L. Linne, Analysis of network models with neuronastrocyte interactions. Neuroinformatics 21, 1–32 (2023). https://doi.org/10.1007/s12021-023-09622-w

    Article  Google Scholar 

  40. Simulating, Analyzing, and Animating Dynamical Systems A Guide to XPPAUT for Researchers and Students Ebard Ermentrout University of Pittsburgh Pittsburgh, Pennsylvania (2002)

Download references

Author information

Authors and Affiliations

Authors

Contributions

First author contributed to implementation of the research, to the analysis of the results and to the writing of the manuscript, second author contributed to the design and to the analysis of the results and the writing of the manuscript, third author contributed to the writing of the manuscript.

Corresponding author

Correspondence to Brajesh Kumar Jha.

Ethics declarations

Conflict of interest

The authors declare that they have never had any known competing financial interests or personal ties that may seem to have influenced the work revealed in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jethanandani, H., Jha, B.K. & Ubale, M. Bifurcation analysis of calcium dynamics in nerve cell. Eur. Phys. J. Plus 138, 1159 (2023). https://doi.org/10.1140/epjp/s13360-023-04699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04699-3

Navigation