Skip to main content
Log in

New bipolar and half-semiconductor materials formed by (6, 0) boron nitride nanotube decorated with different concentrations of rhodium atom

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article uses spin-polarized density functional theory to investigate the structural, electronic, and magnetic properties of (6,0) boron nitride nanotube decorated with three different concentrations (4, 2, and 1%) of rhodium (Rh) atom. The results of our first-principle calculations include the stable geometrical configuration, the corresponding geometrical parameters, and the adsorption and diffusion energy related to each configuration. We calculate the spin-distinct electronic band structure, as well as the densities of states from which we conclude that the structure containing 4% of Rh atom is a bipolar magnetic semiconductor with a spin-up (down) gap equal to 1.42 (1.36) eV and a spin-flip gap of 1.25 eV, while the structures containing 2% and 1% of Rh act as a half-semiconductor material with a spin-up (down) gap equal to 1.88 (1.57) eV. Our calculations show that the work function for the pristine nanotube is equal to 5.69 eV while after rhodium atom adsorption decreases to 3.72, 4.18, and 4.22 eV for 4, 2, and 1% concentrations, respectively. The results of this paper show that boron nitride nanotube decorated with different concentrations of rhodium can be a candidate material with adjustable magnetic properties for application in spintronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: We presented an ab-initio study therefore we did not use any data. Although the data generated during the study are available upon reasonable request.]

References

  1. D.K. Nguyen et al., Searching for d 0 spintronic materials: bismuthene monolayer doped with IVA-group atoms. RSC Adv. 13(9), 5885–5892 (2023). https://doi.org/10.1039/D2RA08278K

    Article  ADS  Google Scholar 

  2. C. Xie et al., Magnetic Weyl and quadratic nodal lines in inverse-Heusler-based fully compensated ferrimagnetic half-metals. Phys Rev Mater 6(9), 094406 (2022). https://doi.org/10.1103/PhysRevMaterials.6.094406

    Article  Google Scholar 

  3. Y. Wang, J. Jiang, W. Mi, Two-dimensional heterotriangulene-based manganese organic frameworks: bipolar magnetic and half semiconductors with perpendicular magnetocrystalline anisotropy. Nanoscale 14(24), 8865–8874 (2022). https://doi.org/10.1039/D2NR00398H

    Article  Google Scholar 

  4. Y. Li et al., Spin gapless semiconductor−metal half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3(7), 1952–1958 (2009). https://doi.org/10.1021/nn9003428

    Article  Google Scholar 

  5. I. Grande et al., Bipolar disorder. Lancet 387(10027), 1561–1572 (2016). https://doi.org/10.1016/S0140-6736(15)00241-X

    Article  Google Scholar 

  6. W.-B. Zhang et al., Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C 3(48), 12457–12468 (2015). https://doi.org/10.1039/C5TC02840J

    Article  Google Scholar 

  7. Y. Kato et al., Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427(6969), 50–53 (2004)

    Article  ADS  Google Scholar 

  8. G. Schmid et al., Current and future applications of nanoclusters. Chem. Soc. Rev. 28(3), 179–185 (1999). https://doi.org/10.1039/A801153B

    Article  Google Scholar 

  9. S.E. Skrabalak et al., Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008). https://doi.org/10.1021/ar800018v

    Article  Google Scholar 

  10. N. MohdNurazzi et al., Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: an overview. Polymers 13(7), 1047 (2021). https://doi.org/10.3390/polym13071047

    Article  Google Scholar 

  11. K. Niespodziana, K. Jurczyk, M. Jurczyk, The manufacturing of titanium-hydroxyapatite nanocomposites for bone implant applications. Nanopages 1(2), 219–229 (2006). https://doi.org/10.1556/NANO.1.2006.2.7

    Article  Google Scholar 

  12. Y. Zhou, et al., Dual-function ligand surface control to achieve high efficiency and brightness perovskite quantum dots LED devices. Vacuum, 112165 (2023). https://doi.org/10.1016/j.vacuum.2023.112165

  13. Y. Xu et al., Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit. Rev. Food Sci. Nutr. 63(4), 486–504 (2023). https://doi.org/10.1080/10408398.2021.1950117

    Article  Google Scholar 

  14. C. Biz, M. Fianchini, J. Gracia, Catalysis meets spintronics; spin potentials associated with open-shell orbital configurations enhance the activity of Pt3Co nanostructures for oxygen reduction: a density functional theory study. ACS Appl. Nano Mater. 3(1), 506–515 (2020). https://doi.org/10.1021/acsanm.9b02067

    Article  Google Scholar 

  15. N. Serinçay, M.F. Fellah, Acetaldehyde adsorption and detection: a density functional theory study on Al-doped graphene. Vacuum 175, 109279 (2020). https://doi.org/10.1016/j.vacuum.2020.109279

    Article  ADS  Google Scholar 

  16. A.S. Rad, K. Ayub, Ni adsorption on Al12P12 nano-cage: a DFT study. J. Alloy. Compd. 678, 317–324 (2016). https://doi.org/10.1016/j.jallcom.2016.03.175

    Article  Google Scholar 

  17. F. Wu et al., Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano 16(3), 3647–3663 (2022). https://doi.org/10.1021/acsnano.1c06777

    Article  Google Scholar 

  18. J.A. Talla, Ab initio simulations of doped single-walled carbon nanotube sensors. Chem. Phys. 392(1), 71–77 (2012). https://doi.org/10.1016/j.chemphys.2011.10.014

    Article  ADS  Google Scholar 

  19. Z. K. Horastani, S.J. Hajiani, DFT study of Ag-X (X= Pd, Pt, Ag) decorated (8, 0) single wall carbon nanotube for spintronic applications. J. Alloys Comp., 172231 (2023). https://doi.org/10.1016/j.jallcom.2023.172231

  20. P. Palmero, Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5(2), 656–696 (2015). https://doi.org/10.3390/nano5020656

    Article  Google Scholar 

  21. T. Xu et al., Advances in synthesis and applications of boron nitride nanotubes: a review. Chem. Eng. J. 431, 134118 (2022). https://doi.org/10.1016/j.cej.2021.134118

    Article  Google Scholar 

  22. E.A. Turhan et al., Properties and applications of boron nitride nanotubes. Nanotechnology 33(24), 242001 (2022). https://doi.org/10.1088/1361-6528/ac5839

    Article  ADS  Google Scholar 

  23. S. Mohammadi, M. Taghizadeh, H. Masoumi, Spin transport properties of boron nitride nanotubes: a DFT study. Comput. Condensed Matter 30, e00636 (2022). https://doi.org/10.1016/j.cocom.2021.e00636

    Article  Google Scholar 

  24. J. Sneha et al., Covalent modification of single-walled boron nitride nanotube (BNNT) with amino acids: Ab initio method. Surfaces Interfaces 42, 103337 (2023). https://doi.org/10.1016/j.surfin.2023.103337

    Article  Google Scholar 

  25. M. Lu et al., DFT calculations and experiments of oxidation resistance research on B, N, and Si multi-doped diamond films. Appl. Surf. Sci. 612, 155865 (2023). https://doi.org/10.1016/j.apsusc.2022.155865

    Article  Google Scholar 

  26. N. Kostoglou et al., Boron nitride nanotubes versus carbon nanotubes: a thermal stability and oxidation behavior study. Nanomaterials 10(12), 2435 (2020). https://doi.org/10.3390/nano10122435

    Article  Google Scholar 

  27. L. Wu et al., Experimental and computational research on the effect of flow distribution on the growth of boron nitride nanotubes by chemical vapor deposition. J. Phys. Chem. C (2023). https://doi.org/10.1021/accountsmr.2c00148

    Article  Google Scholar 

  28. N. S. Al-Maliky, S. N.M. Alhamdi, Polarizability and Band Gap of Boron Nitrite Nanotubes for Different Length and Diameter. J. Adv. Res. Fluid Mech. Therm. Sci. 74(2), 160–167 (2020).

  29. K.-I. Choi et al., Noble metal nanoparticles decorated boron nitride nanotubes for efficient and selective low-temperature catalytic reduction of nitric oxide with carbon monoxide. ACS Appl. Mater. Interfaces. 15(8), 10670–10678 (2023)

    Article  Google Scholar 

  30. E. Vahapoglu, et al., Single-electron spin resonance in a nanoelectronic device using a global field. Sci. Adv. 7(33), eabg9158 (2021). https://doi.org/10.1126/sciadv.abg9158

  31. A. Singh, S. Dubey, H.K. Dubey, Nanotechnology: the future engineering. Nanotechnology 6(2), 230–233 (2019)

    Google Scholar 

  32. A. Lenin et al., Hybrid Ni–boron nitride nanotube magnetic semiconductor—a new material for spintronics. ACS Omega 5(32), 20014–20020 (2020). https://doi.org/10.1021/acsomega.0c01408

    Article  Google Scholar 

  33. M.H. Mohammed et al., Engineering and controlling the electronic properties of zigzag and armchair boron nitride nanotubes with various concentrations of oxygen impurities. Chin. J. Phys. (2023). https://doi.org/10.1016/j.cjph.2023.07.018

    Article  Google Scholar 

  34. G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169(1), 35–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Noura et al., Hydrogen adsorption on magnesium-decorated (3, 3) and (5, 0) boron nitride nanotubes. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.05.117

    Article  Google Scholar 

  36. P. Chaudhuri et al., First-principles study of nanotubes of carbon, boron and nitrogen. Appl. Surf. Sci. 490, 242–250 (2019). https://doi.org/10.1016/j.apsusc.2019.05.212

    Article  ADS  Google Scholar 

  37. L. Li et al., Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics. Phys. Rev. Lett. 126(3), 036401 (2021)

    Article  ADS  Google Scholar 

  38. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  40. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  41. K.B. Dhungana, R. Pati, Boron nitride nanotubes for spintronics. Sensors 14(9), 17655–17685 (2014). https://doi.org/10.3390/s140917655

    Article  ADS  Google Scholar 

  42. K. Nakada, A. Ishii, Migration of adatom adsorption on graphene using DFT calculation. Solid State Commun. 151(1), 13–16 (2011). https://doi.org/10.1016/j.ssc.2010.10.036

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RK performed most of the calculations and also wrote the initial draft of this paper. ZKH guided in setting up the calculations and helped to analyze the results. She also provided the main idea of this paper, supervised the project, and edited the manuscript.

Corresponding author

Correspondence to Zahra Karami Horastani.

Ethics declarations

Conflict of Interest

The authors did not receive support from any organization for the submitted work. Also, the authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadkhodaee, R., Horastani, Z.K. New bipolar and half-semiconductor materials formed by (6, 0) boron nitride nanotube decorated with different concentrations of rhodium atom. Eur. Phys. J. Plus 138, 1066 (2023). https://doi.org/10.1140/epjp/s13360-023-04683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04683-x

Navigation