Skip to main content
Log in

Soliton molecules, multi-breathers and dynamical behaviors of the Lakshmanan–Porsezian–Daniel equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we investigate the Lakshmanan–Porsezian–Daniel (LPD) equation with high-order nonlinear and dispersion terms which can describe an inhomogeneous one-dimensional anisotropic Heisenberg ferromagnetic spin chain and alpha helical protein. With the aid of auxiliary function, the bilinear form of the LPD equation is constructed. Multi-soliton solutions are obtained by solving the corresponding bilinear form. Multi-breather solutions are presented by assuming the complex conjugation relations on the parameters of the multi-solitons. The dynamics of one breather, two breathers and their interactions are constructed by selecting the appropriate parameters. The strength of the high-order nonlinear and dispersion effects plays a key role in the breather solutions. Soliton molecule, the breather–soliton molecule and the breather molecule are discovered by applying the velocity resonance conditions. The interactions among the soliton molecules, which could be observed in marine and oceanic waters, are investigated through numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request.

References

  1. Y.S. Kivshar, G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003)

    Google Scholar 

  2. A. Hasegawa, Optical Solitons in Fibers (Springer, 2013)

    Google Scholar 

  3. M. Daniel, K. Deepamala, Physica A 22, 241 (1995)

    Article  ADS  Google Scholar 

  4. X.W. Jin, S.J. Shen, Z.Y. Yang, J. Lin, Phys. Rev. E 105, 014205 (2022)

    Article  ADS  Google Scholar 

  5. R.R. Wang, Y.Y. Wang, C.Q. Dai, Opt. Laser Technol. 152, 108103 (2022)

    Article  Google Scholar 

  6. M. Lakshmanan, Phys. Lett. A 61, 53–54 (1997)

    Article  ADS  Google Scholar 

  7. C.J. Thompson, K.A. Ross, B.J.P. Thompson et al., Physica A 133, 330–336 (1985)

    Article  ADS  Google Scholar 

  8. K. Nakamura, Y. Nakahara, A.R. Bishop, Phys. Rev. Lett. 54, 861 (1985)

    Article  ADS  Google Scholar 

  9. M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483488 (1988)

    Article  Google Scholar 

  10. K. Porsezian, M. Daniel, M. Lakshmanan, J. Math. Phys. 33, 1807–1816 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y.F. Wang, N. Liu, B.L. Guo, J. Math. Anal. Appl. 506, 125560 (2022)

    Article  Google Scholar 

  12. M. Wang, Y. Chen, Nonlinear Dyn. 111, 655 (2023)

    Article  Google Scholar 

  13. R.X. Liu, B. Tian, L.C. Liu et al., Physica B 413, 120 (2013)

    Article  ADS  Google Scholar 

  14. Y. Ye, C. Hou, D. Cheng et al., Phys. Lett. A 384, 126226 (2020)

    Article  MathSciNet  Google Scholar 

  15. M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005)

    Article  ADS  Google Scholar 

  16. B. Orta, A. Zaviyalov, C.K. Nielsen et al., Opt. Lett. 35, 1578 (2010)

    Article  ADS  Google Scholar 

  17. M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005)

    Article  ADS  Google Scholar 

  18. G. Herink, F. Kurtz, B. Jalali et al., Science 356, 50 (2017)

    Article  ADS  Google Scholar 

  19. F. Mitschke, A. Hause, C. Mahnke, Eur. Phys. J. 225, 245364 (2016)

    Google Scholar 

  20. O. Melchert, S. Willms, S. Bose, A. Yulin, B. Roth, F. Mitschke, A. Demircan, Phys. Rev. Lett. 123, 243905 (2019)

    Article  ADS  Google Scholar 

  21. G. Xu, A. Gelash, A. Chabchoub et al., Phys. Rev. Lett. 122, 084101 (2019)

    Article  ADS  Google Scholar 

  22. M. Kirane, S. Stalin, R. Arun, M. Lakshmanan, arXiv:2308.16535 [nlin.PS] (2023)

  23. B. Wang, H. Han, L. Yu et al., Nanophotonics 11, 129 (2021)

    Article  Google Scholar 

  24. S.Y. Lou, J. Phys. Commun. 4, 041002 (2020)

    Article  Google Scholar 

  25. M. Jia, J. Lin, S.Y. Lou, Nonlinear Dyn. 100, 3745 (2020)

    Article  Google Scholar 

  26. X. Yang, R. Fan, B. Li, Phys. Scr. 95, 045213 (2020)

    Article  ADS  Google Scholar 

  27. S.N. Lin, Y. Chen, J. Comput. Phys. 457, 111053 (2022)

    Article  Google Scholar 

  28. L.H. Wang, K. Porsezian, J.S. He, Phys. Rev. E 87, 053202 (2013)

    Article  ADS  Google Scholar 

  29. M.R. Ali, M.A. Khattab, S.M. Mabrouk, Optik 272, 170256 (2023)

    Article  ADS  Google Scholar 

  30. B.Q. Li, Y.L. Ma, Nonlinear Dyn. 111, 6689–6699 (2023)

    Article  Google Scholar 

  31. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  32. W.T. Li, Z. Zhang, X.Y. Yang, B. Li, Int. J. Mod. Phys. B 33, 1950255 (2019)

    Article  ADS  Google Scholar 

  33. B. Ren, J. Lin, Wave Motion 117, 103110 (2022)

    Article  Google Scholar 

  34. B. Ren, J. Lin, Eur. Phys. J. Plus 136, 123 (2021)

    Article  Google Scholar 

  35. Z. Yan, S.Y. Lou, Appl. Math. Lett. 104, 106271 (2020)

    Article  MathSciNet  Google Scholar 

  36. Z. Zhang, Q. Guo, B. Li, J. Chen, Commun. Nonlinear Sci. Numer. Simul. 101, 105866 (2021)

    Article  Google Scholar 

  37. Y. Li, R. Yao, Y. Xia, S. Lou, Commun. Nonlinear Sci. Numer. Simul. 100, 105843 (2021)

    Article  Google Scholar 

  38. P. Rohrmann, A. Hause, F. Mitschke, Phys. Rev. A 87, 043834 (2013)

    Article  ADS  Google Scholar 

  39. A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 91, 032928 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Mahnke, F. Mitschke, Phys. Rev. A 85, 033808 (2012)

    Article  ADS  Google Scholar 

  41. P.F. Wei, C.X. Long, C. Zhu et al., Chaos Soliton Fract. 158, 112062 (2022)

    Article  Google Scholar 

  42. C.Q. Dai, Y.Y. Wang, J.F. Zhang, Nonlinear Dyn. 102, 379 (2020)

    Article  Google Scholar 

  43. X.W. Jin, J. Lin, J. Magn. Magn. Mater. 502, 166590 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China Grant Nos. 12375006, 11975156, 12105243 and 11775146. The authors are in debt to thank Dr. Xin-Wei Jin for his help to offer the numerical simulation on the stability of the soliton molecule.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Z., Ren, B. & Wang, W. Soliton molecules, multi-breathers and dynamical behaviors of the Lakshmanan–Porsezian–Daniel equation. Eur. Phys. J. Plus 138, 1051 (2023). https://doi.org/10.1140/epjp/s13360-023-04682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04682-y

Navigation