Skip to main content
Log in

Combinations of the \(\mu\)-\(\tau\) reflection symmetry and texture zeros in the Dirac neutrino mass matrix of the seesaw model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have studied the combinations of texture zeros with the \(\mu\)\(\tau\) reflection symmetry (which predicts \(\theta ^{}_{23} = \pi /4\) and \(\delta = \pm \pi /2\)) so that the predictive power of the seesaw model can be further improved: in the basis of the right-handed neutrino mass matrix being diagonal, we impose some texture zeros on the Dirac neutrino mass matrix which obeys the \(\mu\)\(\tau\) reflection symmetry, and then study its phenomenological consequences for the neutrino observables and leptogenesis. We have first performed the study in the general seesaw model with three right-handed neutrinos. Then, to further reduce the free parameters of the seesaw model and thus further improve its predictive power, we have performed the study in the following two simplified scenarios: reducing the general seesaw model to the minimal seesaw model (with only two right-handed neutrinos); combining the \(\mu\)\(\tau\) reflection symmetry with the TM1 and TM2 mixings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. Z.Z. Xing, Phys. Rep. 854, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  3. M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen, D. Freedman, (North-Holland, 1979), p. 315

  4. T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto (KEK Report No. 79-18, Tsukuba, 1979), p. 95

  5. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  6. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  7. P.F. de Salas, D.V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena, M. Tortola, J.W.F. Valle, JHEP 02, 071 (2021)

    Article  Google Scholar 

  8. F. Capozzi, E.D. Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, Phys. Rev. D 104, 083031 (2021)

    Article  ADS  Google Scholar 

  9. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, JHEP 09, 178 (2020)

    Article  ADS  Google Scholar 

  10. W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011)

    Article  ADS  Google Scholar 

  11. S.M. Bilenky, C. Giunti, Int. J. Mod. Phys. A 30, 0001 (2015)

    Article  Google Scholar 

  12. S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Adv. High Energy Phys. 2016, 2162659 (2016)

    Article  Google Scholar 

  13. J.D. Vergados, H. Ejiri, F. Simkovic, Int. J. Mod. Phys. E 25, 1630007 (2016)

    Article  ADS  Google Scholar 

  14. K. Abe et al., T2K collaboration. Nature 580, 339 (2020)

    Google Scholar 

  15. S.F. King, C. Luhn, Rept. Prog. Phys. 76, 056201 (2013)

    Article  ADS  Google Scholar 

  16. F. Feruglio, A. Romanino, Rev. Mod. Phys. 93, 015007 (2021)

    Article  ADS  Google Scholar 

  17. P.H. Harrison, W.G. Scott, Phys. Lett. B 547, 219 (2002)

    Article  ADS  Google Scholar 

  18. Z.Z. Xing, Z.H. Zhao, Rept. Prog. Phys. 79, 076201 (2016)

    Article  ADS  Google Scholar 

  19. Z.Z. Xing, Rept. Prog. Phys. 86, 076201 (2023)

    Article  ADS  Google Scholar 

  20. P.H. Frampton, S.L. Glashow, D. Marfatia, Phys. Lett. B 536, 79 (2002)

    Article  ADS  Google Scholar 

  21. Z.Z. Xing, Phys. Lett. B 530, 159 (2002)

    Article  ADS  Google Scholar 

  22. Z.Z. Xing, Phys. Lett. B 539, 85 (2002)

    Article  ADS  Google Scholar 

  23. J. J. Liao, D. Marfati, K. Whisnant, Phys. Rev. D 87, 073013 (2013)

    Article  ADS  Google Scholar 

  24. J.J. Liao, D. Marfati, K. Whisnant, JHEP 09, 01 (2014)

    Google Scholar 

  25. W. Grimus, A.S. Joshipura, L. Lavoura, M. Tanimoto, Eur. Phys. J. C 36, 227 (2004)

    Article  ADS  Google Scholar 

  26. C.C. Nishi, B.L. Sanchez-Vega, JHEP 01, 068 (2017)

    Article  ADS  Google Scholar 

  27. C. C. Nishi, B. L. Sanchez-Vega, G. Souza Silva, JHEP 1809, 042 (2018)

  28. AYu. Smirnov, Phys. Rev. D 48, 3264 (1993)

    Article  ADS  Google Scholar 

  29. S.F. King, Nucl. Phys. B 576, 85 (2000)

    Article  ADS  Google Scholar 

  30. S.F. King, JHEP 0209, 011 (2002);

    Article  ADS  Google Scholar 

  31. P.H. Frampton, S.L. Glashow, T. Yanagida, Phys. Lett. B 548, 119 (2002)

    Article  ADS  Google Scholar 

  32. T. Endoh, S. Kaneko, S.K. Kang, T. Morozumi, M. Tanimoto, Phys. Rev. Lett. 89, 231601 (2002)

    Article  ADS  Google Scholar 

  33. V. Barger, D.A. Dicus, H.J. He, T.J. Li, Phys. Lett. B 583, 173 (2004)

    Article  ADS  Google Scholar 

  34. Z.Z. Xing, Z.H. Zhao, Rep. Prog. Phys. 84, 066201 (2021)

    Article  ADS  Google Scholar 

  35. J.D. Bjorken, P.F. Harrison, W.G. Scott, Phys. Rev. D 74, 073012 (2006)

    Article  ADS  Google Scholar 

  36. Z.Z. Xing, S. Zhou, Phys. Lett. B 653, 278 (2007)

    Article  ADS  Google Scholar 

  37. X.G. He, A. Zee, Phys. Lett. B 645, 427 (2007)

    Article  ADS  Google Scholar 

  38. C.H. Albright, W. Rodejohann, Eur. Phys. J. C 62, 599 (2009)

    Article  ADS  Google Scholar 

  39. C.H. Albright, A. Dueck, W. Rodejohann, Eur. Phys. J. C 70, 1099 (2010)

    Article  ADS  Google Scholar 

  40. P. Chen, S.C. Chulia, G.J. Ding, R. Srivastava, J.W.F. Valle, Phys. Rev. D 100, 053001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Fukugita, T. Yanagida, Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  42. W. Buchmuller, R.D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005)

    Article  ADS  Google Scholar 

  43. W. Buchmuller, P. Di Bari, M. Plumacher, Ann. Phys. 315, 305 (2005)

    Article  ADS  Google Scholar 

  44. S. Davidson, E. Nardi, Y. Nir, Phys. Rep. 466, 105 (2008)

    Article  ADS  Google Scholar 

  45. P.A.R. Ade et al., Planck collaboration. Astron. Astrophys. A 16, 571 (2014)

    Google Scholar 

  46. A. Abada, S. Davidson, F.X. Josse-Michaux, M. Losada, A. Riotto, JCAP 0604, 004 (2006)

    Article  ADS  Google Scholar 

  47. E. Nardi, Y. Nir, E. Roulet, J. Racker, JHEP 0601, 164 (2006)

    Article  ADS  Google Scholar 

  48. G. Giudice, A. Notari, M. Raidal, A. Riotto, A. Strumia, Nucl. Phys. B 685, 89 (2004)

    Article  ADS  Google Scholar 

  49. W. Rodejohann, X.J. Xu, Phys. Rev. D 96, 055039 (2017)

    Article  ADS  Google Scholar 

  50. Z.H. Zhao, Eur. Phys. J. C 82, 436 (2022)

    Article  ADS  Google Scholar 

  51. P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002)

    Article  ADS  Google Scholar 

  52. Z.Z. Xing, Phys. Lett. B 533, 85 (2002)

    Article  ADS  Google Scholar 

  53. Z.H. Zhao, JHEP 09, 023 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Yang Gao and Lei Zhang for helping plot some figures of this paper. This work was supported in part by the National Natural Science Foundation of China under Grant No. 11605081, and the Natural Science Foundation of the Liaoning Scientific Committee under grant NO. 2022-MS-314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-hua Zhao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Zh. Combinations of the \(\mu\)-\(\tau\) reflection symmetry and texture zeros in the Dirac neutrino mass matrix of the seesaw model. Eur. Phys. J. Plus 138, 1055 (2023). https://doi.org/10.1140/epjp/s13360-023-04678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04678-8

Navigation