Skip to main content
Log in

Hydrogenation and fluorination of graphene, boron nitride, bc\(_{2}\)n nanowires and nanoribbons with defects via DFT

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigated the structural, energetic, magnetic, and electronic characteristics of graphene, boron nitride, bc\(_{2}\)n nanowires, and defective nanoribbons saturated with hydrogen and fluorine atoms. The findings indicate that nanowires exhibit strong linear bonds, high formation energies, and positive phonon frequencies, thereby rendering them dynamically stable. However, saturation transforms these bonds into unstable zigzags, making them unstable. Non-saturated edges of nanoribbons have high formation energy, spin polarization, and narrow energy gaps within the band structure. We observe a reduction in the formation energy and an opening of an energy gap as a result of edge saturation in nanoribbons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

No data are associated in the manuscript.

References

  1. Z. Zhao, B. Xu, Y. Tian, Recent advances in superhard materials. Annu. Rev. Mater. Res. 46, 383–406 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–81 (2011)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  6. F. Schäffel, Chapter 2-The atomic structure of graphene and its few-layer counterparts, in Graphene. ed. by J.H. Warner, F. Schäffel, A. Bachmatiuk, M.H. Rümmeli (Elsevier, Amsterdam, 2013), pp.5–59

    Chapter  Google Scholar 

  7. H. Kim, J.H. Ahn, Graphene for flexible and wearable device applications. Carbon 120(244), 257 (2017)

    Google Scholar 

  8. M. Tamagnone, C. Moldovan, J.M. Poumirol, A.B. Kuzmenko, A.M. Ionescu, J.R. Mosig et al., Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 7(1), 11216 (2016). https://doi.org/10.1038/ncomms11216

    Article  ADS  Google Scholar 

  9. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  ADS  Google Scholar 

  10. A. Shekhawat, R.O. Ritchie, Toughness, strength of nanocrystalline graphene. Nat. Commun. 7(1), 10546 (2016). https://doi.org/10.1038/ncomms10546

    Article  ADS  Google Scholar 

  11. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012). https://doi.org/10.1103/RevModPhys.84.1067

    Article  ADS  Google Scholar 

  12. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  13. H. Murata, Y. Nakajima, N. Saitoh, N. Yoshizawa, T. Suemasu, K. Toko, High-electrical-conductivity multilayer graphene. Formed, by layer exchange with controlled thickness and interlayer. Sci. Rep. 9(1), 4068 (2019). https://doi.org/10.1038/s41598-019-40547-0

    Article  ADS  Google Scholar 

  14. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064

    Article  ADS  Google Scholar 

  15. M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder, Boron nitride nanomesh. Science 303(5655), 217–220 (2004). https://doi.org/10.1126/science.1091979

    Article  ADS  Google Scholar 

  16. J. Yin, J. Li, Y. Hang, J. Yu, G. Tai, X. Li et al., Boron nitride nanostructures: fabrication, functionalization and applications. Small 12(22), 2942–2968 (2016). https://doi.org/10.1002/smll.201600053

    Article  ADS  Google Scholar 

  17. J.E. Jacak, Phase diagrams for superfluidity of indirect excitons in double Hall systems GaAs, GaAlAs, GaAs and bilayer-graphene, hBN, bilayer-graphene. Europhys. Lett. 123(1), 16001 (2018). https://doi.org/10.1209/0295-5075/123/16001

    Article  ADS  Google Scholar 

  18. F. Amet, A.J. Bestwick, J.R. Williams, L. Balicas, K. Watanabe, T. Taniguchi et al., Composite fermions and broken symmetries in graphene. Nat. Commun. 6(1), 5838 (2015). https://doi.org/10.1038/ncomms6838

    Article  ADS  Google Scholar 

  19. J.I.A. Li, T. Taniguchi, K. Watanabe, J. Hone, C.R. Dean, Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13(8), 751–755 (2017). https://doi.org/10.1038/nphys4140

    Article  Google Scholar 

  20. M.O. Goerbig, Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–243 (2011). https://doi.org/10.1103/RevModPhys.83.1193

    Article  ADS  Google Scholar 

  21. S. Fukamachi, P. Solís-Fernández, K. Kawahara, D. Tanaka, T. Otake, Y.C. Lin et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6(2), 126–136 (2023). https://doi.org/10.1038/s41928-022-00911-x

    Article  Google Scholar 

  22. P. Łydżba, L. Jacak, J. Jacak, Hierarchy of fillings for the FQHE in monolayer graphene. Sci. Rep. 5(1), 14287 (2015). https://doi.org/10.1038/srep14287

    Article  ADS  Google Scholar 

  23. Y.M. Banadaki, S. Sharifi, Graphene Nanostructures: Modeling, Simulation, and Applications in Electronics and Photonics (CRC Press, Boca Raton, 2019)

    Book  Google Scholar 

  24. T.H. Seo, W. Lee, K.S. Lee, J.Y. Hwang, D.I. Son, S. Ahn et al., Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization. Carbon 182, 791–798 (2021)

    Article  Google Scholar 

  25. J. Gubicza, Defect Structure in Nanomaterials (Elsevier, Amsterdam, 2012)

    Book  Google Scholar 

  26. Q. Fan, L. Yan, M.W. Tripp, O. Krejčí, S. Dimosthenous, S.R. Kachel et al., Biphenylene network: a nonbenzenoid carbon allotrope. Science 372(6544), 852–856 (2021). https://doi.org/10.1126/science.abg4509

    Article  ADS  Google Scholar 

  27. M. Liu, C.L. Yang, M.S. Wang, X.G. Ma, Halogen edge-passivated antimonene nanoribbons for photocatalytic hydrogen evolution reaction with high solar-to-hydrogen conversion. J. Phys. Chem. C 125(39), 21341–2151 (2021). https://doi.org/10.1021/acs.jpcc.1c06614

    Article  Google Scholar 

  28. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5(5), 326–329 (2010). https://doi.org/10.1038/nnano.2010.53

    Article  ADS  Google Scholar 

  29. H.J. Park, J. Cha, M. Choi, J.H. Kim, R.Y. Tay, E.H.T. Teo et al., One-dimensional hexagonal boron nitride conducting channel. Sci. Adv. 6(10), eaay4958 (2020). https://doi.org/10.1126/sciadv.aay4958

    Article  ADS  Google Scholar 

  30. D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997). https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V

    Article  Google Scholar 

  31. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  ADS  Google Scholar 

  32. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–8 (1996)

    Article  ADS  Google Scholar 

  35. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). https://doi.org/10.1103/PhysRevB.43.1993

    Article  ADS  Google Scholar 

  36. S.S. Alexandre, H. Chacham, R.W. Nunes, Structure and energetics of boron nitride fullerenes: the role of stoichiometry. Phys. Rev. B. 63, 045402 (2001). https://doi.org/10.1103/PhysRevB.63.045402

    Article  ADS  Google Scholar 

  37. S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Stability of antiphase line defects in nanometer-sized boron nitride cones. Phys. Rev. B 70, 205412 (2004). https://doi.org/10.1103/PhysRevB.70.205412

    Article  ADS  Google Scholar 

  38. D. Silva, S. Azevedo, J.R. Kaschny, Structural and electronic properties of fluorinated boron nitride monolayers. Eur. Phys. J. B. 94(1), 2 (2021)

    Article  ADS  Google Scholar 

  39. M.M. Deza, E. Deza (Springer, Berlin, 2009), p. 1-583. https://doi.org/10.1007/978-3-642-00234-2_1

  40. J.A. Januszewski, R.R. Tykwinski, Synthesis and properties of long cumulenes. Chem. Soc. Rev. 43, 3184–203 (2014). https://doi.org/10.1039/C4CS00022F

    Article  Google Scholar 

  41. J. Lawrence, A. Berdonces-Layunta, S. Edalatmanesh, J. Castro-Esteban, T. Wang, A. Jimenez-Martin et al., Circumventing the stability problems of graphene nanoribbon zigzag edges. Nat. Chem. 14(12), 1451–1458 (2022). https://doi.org/10.1038/s41557-022-01042-8

    Article  Google Scholar 

  42. B. Mortazavi, I.S. Novikov, E.V. Podryabinkin, S. Roche, T. Rabczuk, A.V. Shapeev et al., Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials. Appl. Mater. Today 20, 100685 (2020)

    Article  Google Scholar 

  43. U. Argaman, G. Makov, Carbon nanowires under compression and their vibrational anomalies. Nanoscale Adv. 4, 2996–3009 (2022). https://doi.org/10.1039/D2NA00027J

    Article  ADS  Google Scholar 

  44. D. Cahen, A. Kahn, Electron energetics at surfaces and interfaces: concepts and experiments. Adv. Mater. 15(4), 271–7 (2003)

    Article  Google Scholar 

  45. F. Djurabekova, A. Ruzibaev, E. Holmström, S. Parviainen, M. Hakala, Local changes of work function near rough features on Cu surfaces operated under high external electric field. J. Appl. Phys. 114(24), 1–8 (2013)

    Article  Google Scholar 

  46. G. Shao, Work function and electron affinity of semiconductors: doping effect and complication due to Fermi level pinning. Energy Environ. Mater. 4(3), 273–6 (2021)

    Article  Google Scholar 

  47. A. Kahn, Fermi level, work function and vacuum level. Mater. Horiz. 3(1), 7–10 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support provided by the Brazilian Agencies CNPq (scholarship 151333/2022-0), CAPES and Pronex-Fapesq/PB-MCT/CNPq (Grants 006/2018 and 151/2018).

Author information

Authors and Affiliations

Authors

Contributions

TG involved in investigation, visualization, project administration, writing, review, and validation. JMP involved in investigation, visualization, and writing. AKMP involved in review and writing. DSG involved in investigation, visualization, and writing. SA involved in review, validation, project administration, and supervision.

Corresponding author

Correspondence to T. Guerra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest, financial, or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, T., Pinto, A.K.M., Pontes, J.M. et al. Hydrogenation and fluorination of graphene, boron nitride, bc\(_{2}\)n nanowires and nanoribbons with defects via DFT. Eur. Phys. J. Plus 138, 1033 (2023). https://doi.org/10.1140/epjp/s13360-023-04667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04667-x

Navigation