Skip to main content
Log in

Inspecting the impact of decisive factors on the second- and third-harmonic generation in cylindrical core/shell/shell quantum dot (CCSSQD) with hydrogenic impurity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The main objective of this research report is to explore the influence of additional tuning factors (magnetic field, dielectric environment, well width, height and Rashba parameter) on the second- (SHG) and third-harmonic generation (THG) in AlGaAs/GaAs/AlGaAs core–shell–shell cylindrical quantum dots (CCSQDs). The outcomes of our theoretical investigation revealed a significant dependence concerning the investigated optical properties. Moreover, the impurity state experiences substantial alterations under the influence of a magnetic field, dielectric environment and the Rashba parameter, leading to exploitable modifications in the SHG and THG including changes in both intensities and peak locations. The results underlined the importance of the dielectric confinement impact for the adjustment of certain wavelengths to serve the optical communication fields. The findings demonstrated that the controlling impurity’s position allows tuning the amplitude of the third-order nonlinear optical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

No data were associated in the manuscript.

References

  1. R.G. Toscano-Negrette, J.C. León-González, J.A. Vinasco, A.L. Morales, F. Koc, A.E. Kavruk, M. Sahin, M.E. Mora-Ramos, J. Sierra-Ortega, J.C. Martínez-Orozco, R.L. Restrepo, C.A. Duque, Nanomaterials 13, 550 (2023)

    Article  Google Scholar 

  2. V. Holovatsky, I. Holovatskyi, M. Chubrei, & C. A. Duque, Appl. Nanosci. 1–9 (2023)

  3. K. Hasanirokha, A. Asgari, S. Mohammadi, J. Eur. Opt. Soc. Rapid Publ. 17, 26 (2021)

    Article  Google Scholar 

  4. K. Hasanirokha, A. Asgari, Opt. Mat. 81, 129–133 (2018)

    Article  Google Scholar 

  5. A. Sabah, I. Shafaqat, A. Naifar, H. Albalawi, M.S. Alqahtani, M.G.B. Ashiq, S.A. Shabbir, Opt. Mat. 142, 114065 (2023)

    Article  Google Scholar 

  6. K. Hasanirokha, A. Asgari, M. Mahdizadeh Rokhi, Optik 188, 99–103 (2019)

    Article  ADS  Google Scholar 

  7. R. Boussetta, O. Mommadi, S. Chouef, L. Belamkadem, M. Hbibi, A. El Moussaouy, J.A. Vinasco, C.A. Duque, A.K. El-Miad, Physica B: Condens. Matter 665, 415009 (2023)

    Article  Google Scholar 

  8. L. Lamata, Electronics 12, 1717 (2023)

    Article  Google Scholar 

  9. Q. Jing, X. Meng, C. Wang, H. Zhao, A.C.S. Appl, Nano Mater. 6, 4449–4454 (2023)

    Google Scholar 

  10. M. Tshipa, Superlattices Microstruct. 159, 107031 (2021)

    Article  Google Scholar 

  11. N. Aghoutane, L.M. Pérez, D. Laroze, M. El-Yadri, E. Feddi, Results Phys. 44, 106158 (2023)

    Article  Google Scholar 

  12. L. Belamkadem, O. Mommadi, R. Boussetta, S. Chouef, M. Chnafi, A. El Moussaouy, J.A. Vinasco, D. Laroze, C.A. Duque, C. Kenfack Sadem, R.M. Keumo-Tsiaze, F.C. Fobasso-Mbognou, A. Kerkour El-Miad, Thin Solid Films 757, 139396 (2022)

    Article  ADS  Google Scholar 

  13. J.L. Casas Espínola, X.A. Hernández Contreras, J. Mater. Sci. Mater. Electron. 28, 7132–7138 (2017)

    Article  Google Scholar 

  14. A. Piryatinski, S.A. Ivanov, S. Tretiak, V.I. Klimov, Nano Lett. 7, 108–115 (2007)

    Article  ADS  Google Scholar 

  15. C.S. Garoufalis, Z. Zeng, G. Bester, I. Galanakis, D. Hayrapetyan, E. Paspalakis, S. Baskoutas, J. Phys. Chem. C 126, 2833–2838 (2022)

    Article  Google Scholar 

  16. M. Cristea, A. Radu, E.C. Niculescu, J. Lumin. 143, 592–599 (2013)

    Article  Google Scholar 

  17. E.J. Tyrrell, S. Tomić, J. Phys. Chem. C 119, 12720–12730 (2015)

    Article  Google Scholar 

  18. H. Jeong, S.K. Shin, Chem. Phys. Lett. 692, 333–339 (2018)

    Article  ADS  Google Scholar 

  19. M. Elamathi, A. John Peter, C.W. Lee, Eur. Phys. J. D 74, 1–8 (2020)

    Article  Google Scholar 

  20. A. Naifar, N. Zeiri, N. Yahyaoui, A. Jbeli, S.A.B. Nasrallah, M. Said, Mater. Sci. Eng. B 274, 115463 (2021)

    Article  Google Scholar 

  21. A. Sabah, S. Tasleem, M. Murtaza, M. Nazir, F. Rashid, J. Phys. Chem. C 124, 9009–9020 (2020)

    Article  Google Scholar 

  22. Z. Zeng, C.S. Garoufalis, S. Baskoutas, J. Nanoelectron. Optoelectron. 11, 615–619 (2016)

    Article  Google Scholar 

  23. C. Heyn, C.A. Duque, Sci. Rep. 10, 9155 (2020)

    Article  ADS  Google Scholar 

  24. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F.A.T.İH. Ungan, Micro Nanostruct. 163, 107146 (2022)

    Article  Google Scholar 

  25. M. Hbibi, O. Mommadi, S. Chouef, R. Boussetta, L. Belamkadem, A.E. Moussaouy, C.A. Duque, Sci. Rep.. Rep. 12, 14854 (2022)

    Article  ADS  Google Scholar 

  26. A. Balakrishnan, N. Perumal, Physica E 128, 114613 (2021)

    Article  Google Scholar 

  27. R. Khordad, A. Ghanbari, K. Abbasi, A. Ghaffaripour, J. Comput. Electron. 22, 260–265 (2023)

    Article  Google Scholar 

  28. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Physica E 127, 114543 (2021)

    Article  Google Scholar 

  29. P. Malik, R. Thareja, J. Singh, R. Kakkar, J. Mol. Graph. Model. 111, 108099 (2022)

    Article  Google Scholar 

  30. D. Makhlouf, M. Choubani, F. Saidi, H. Maaref, Mater. Chem. Phys. 267, 124660 (2021)

    Article  Google Scholar 

  31. J.H. Yuan, N. Chen, Z.H. Zhang, J. Su, S.F. Zhou, X.L. Lu, Y.X. Zhao, Superlattices Microstruct. 100, 957 (2016)

    Article  ADS  Google Scholar 

  32. X. Li, Y. Duan, Y. Ma, Commun. Theor. Phys. 74, 085702 (2022)

    Article  ADS  Google Scholar 

  33. U.E. Kalsoom, R. Yi, J. Qu, L. Liu, Front. Phys. 9, 612070 (2021)

    Article  Google Scholar 

  34. A.V. Uskov, E.P. O’Reilly, R.J. Manning, R.P. Webb, D. Cotter, M. Laemmlin, N.N. Ledentsov, D. Bimberg, IEEE Photon. Technol. Lett. 16, 1265 (2004)

    Article  ADS  Google Scholar 

  35. J.C. León-González, R.G. Toscano-Negrette, A.L. Morales, J.A. Vinasco, M.B. Yücel, H. Sari, E. Kasapoglu, S. Sakiroglu, M.E. Mora-Ramos, R.L. Restrepo, C.A. Duque, Nanomaterials 13, 1461 (2023)

    Article  Google Scholar 

  36. S. Dahiya, S. Lahon, R. Sharma, Physica E 147, 115620 (2023)

    Article  Google Scholar 

  37. R. Sharma, M. Kumar, Physica B: Condens. Matter 648, 414402 (2023)

    Article  Google Scholar 

  38. M. Kria, V.V. Nautiyal, K. Lakaal, J. El Hamdaoui, L.M. Pérez, Varsha, D. Laroze, V. Prasad, G. Long, E. Feddi, Front. Phys. 10, 942758 (2022)

    Article  Google Scholar 

  39. I. Janet Sherly, A. Esther Lidiya, P. Nithiananthi, J. Appl. Phys.. Appl. Phys. 125, 16 (2019)

    Google Scholar 

  40. H.R. Esmaeili, B. Vaseghi, G. Rezaei, Eur. Phys. J. B. 91, 1 (2018)

    Article  Google Scholar 

  41. L. Debnath, L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers (Birkhäuser, Boston, 2005), pp.528–529

    Book  MATH  Google Scholar 

  42. K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  43. A. Gharaati, Solid State Commun. 258, 17 (2017)

    Article  ADS  Google Scholar 

  44. E. Dehghan, D. Sanavi Khoshnoud, A.S. Naeimi, Appl. Phys. A 125, 346 (2019)

    Article  ADS  Google Scholar 

  45. A. Zamani, T. Estabar, G. Safarpour, M. Moradi, Superlattices Microstruct. 76, 66 (2014)

    Article  ADS  Google Scholar 

  46. G.M. Amiraliyev, Appl. Math. Comput. 162, 1023 (2005)

    MathSciNet  Google Scholar 

  47. G. Safarpour, A. Zamani, M.A. Izadi, H. Ganjipour, J. Lumin. 147, 295 (2014)

    Article  Google Scholar 

  48. P. Pietiläinen, T. Chakraborty, Phys. Rev. B 73(15), 155315 (2006)

    Article  ADS  Google Scholar 

  49. R. Khordad, J. Lumin. 134, 201 (2013)

    Article  Google Scholar 

  50. P. Hashemi, M. Servatkhah, R. Pourmand, Opt. Quantum Electron. 53, 1 (2021)

    Article  Google Scholar 

  51. Y. Duan, X. Li, Eur. Phys. J. B. 95(5), 84 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  52. M.U.H.A.M.M.E.D. Sayrac, Opt. Quantum Electron 54(1), 52 (2022)

    Article  Google Scholar 

  53. A. Issac, C. Krasselt, F. Cichos, C. Von Borczyskowski, ChemPhysChem 13(13), 3223 (2012)

    Article  Google Scholar 

  54. H. Taş, M. Şahin, J. Appl. Phys. 111, 8 (2012)

    Article  Google Scholar 

  55. C.S. Garoufalis, Z. Zeng, G. Bester, I. Galanakis, D. Hayrapetyan, E. Paspalakis, S. Baskoutas, J. Phys. Chem. C 126(5), 2833 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hasanirokh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanirokh, K., Naifar, A. Inspecting the impact of decisive factors on the second- and third-harmonic generation in cylindrical core/shell/shell quantum dot (CCSSQD) with hydrogenic impurity. Eur. Phys. J. Plus 138, 1031 (2023). https://doi.org/10.1140/epjp/s13360-023-04663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04663-1

Navigation