Skip to main content
Log in

Photoexcited carriers transfer properties in a doped double quantum dots photocell

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Identifying the behavior of photoexcited carriers is one method for empirically boosting their transfer efficiencies in doped double quantum dots (DQDs) photocells. The photoexcited carriers transfer qualities were assessed in this study by the output current, power, and output efficiency in the multi-photon absorption process for a doped DQDs photocell, and an optimization technique is theoretically obtained for this proposed photocell model. The results show that some structure parameters caused by doping, such as gaps, incoherent tunneling coupling, and symmetry of structure between two vertically aligned QDs, can remarkably control the photoexcited carriers transfer properties, and that slightly increasing the ambient temperature around room temperature is beneficial to the transfer performance in this doping DQDs photocell model. Thus, our scheme proves a way to optimized strategies for DQDs photocell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon resonable request by contacting with the corresponding author.].

References

  1. Z.A. Peng, P. Xue, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123(1), 183 (2001)

    Article  Google Scholar 

  2. R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98(12), 3183 (2002)

    Article  Google Scholar 

  3. C.A. Leatherdale, W.K. Woo, F.V. Mikulec, M.G. Bawendi, On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106(31), 7619 (2002)

    Article  Google Scholar 

  4. A.J. Nozik, Making the most of photons. Nat. Nanotechnol. 4(9), 548 (2009)

    Article  ADS  Google Scholar 

  5. S.C. Zhao, Z.D. Liu, Manipulative properties of asymmetric double quantum dots via laser and gate voltage. Chin. Phys. Lett. 26(7), 077802 (2009)

    Article  ADS  Google Scholar 

  6. J.A. Caputo, L.C. Frenette, N. Zhao, K.L. Sowers, T.D. Krauss, D.J. Weix, General and efficient C–C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 139(12), 4250 (2017)

    Article  Google Scholar 

  7. E.R. Bittner, C. Silva, Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions. Nat. Commun. 5, 3119 (2014)

    Article  ADS  Google Scholar 

  8. S.Q. Zhong, S.C. Zhao, S.N. Zhu, Photovoltaic performances in a cavity-coupled double quantum dots photocell. Results Phys. 27, 104503 (2021)

    Article  Google Scholar 

  9. C.R. Xu, M.G. Vavilov, Quantum photovoltaic effect in double quantum dots. Phys. Rev. B 87, 035429 (2013)

    Article  ADS  Google Scholar 

  10. S.C. Zhao, J.Y. Chen, Enhanced quantum yields and efficiency in a quantum dot photocell modeled by a multi-level system. New J. Phys. 21(10), 103015 (2019)

    Article  ADS  Google Scholar 

  11. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46(23), 15578 (1992)

    Article  ADS  Google Scholar 

  12. A. Pimachev, U. Poudyal, V. Proshchenko, W. Wang, Y. Dahnovsky, Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 18(38), 26771 (2016)

    Article  Google Scholar 

  13. G. Rimal, A.K. Pimachev, A.J. Yost, U. Poudyal, S. Maloney, W. Wang, T. Chien, Y. Dahnovsky, J. Tang, Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells. Appl. Phys. Lett. 109(10), 103901 (2016)

    Article  ADS  Google Scholar 

  14. S.C. Zhao, Q.X. Wu, High quantum yields generated by a multi-band quantum dot photocell. Superlattices Microstruct. 137, 106329 (2020)

    Article  Google Scholar 

  15. J. Sun, W. Yu, A. Usman, T.T. Isimjan, S. Dgobbo, E. Alarousu, K. Takanabe, O.F. Mohammed, Generation of multiple excitons in Ag2S quantum dots: single high-energy versus multiple-photon excitation. J. Phys. Chem. Lett. 5, 659 (2014)

    Article  Google Scholar 

  16. M. Li, R. Begum, J. Fu, Q. Xu, T.M. Koh, S.A. Veldhuis, M. Grätzel, S. Mathews, N. Mhaisalkar, T.C. Sun, Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018)

    Article  ADS  Google Scholar 

  17. Y.F. Chen, J. Yin, Q. Wei, C.H. Wang, X.T. Wang, H. Ren, S.F. Yu, O.M. Bakr, O.F. Mohammed, M.J. Li, Multiple exciton generation in tin-lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement. Nat. Photonics 16(7), 485 (2022)

    Article  ADS  Google Scholar 

  18. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510 (1961)

    Article  ADS  Google Scholar 

  19. U. Sikder, A. Haque, Optimization of idealized quantum dot intermediate band solar cells considering spatial variation of generation rates. IEEE Access 1, 363 (2013)

    Article  Google Scholar 

  20. C. Arianna, T. Vittorianna, M. Giovanni, T. Iolena, S. Abdelmajid, P. Adriana, L. Mauro, Experimental evidence of complex energy-level structuring in quantum dot intermediate band solar cells. ACS Appl. Nano Mater. 3(8), 8365 (2020)

    Article  Google Scholar 

  21. A. Shabaev, C.S. Hellberg, A.L. Efros, Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 46(6), 1242 (2013)

    Article  Google Scholar 

  22. M. Makkar, R. Viswanatha, Frontier challenges in doping quantum dots: synthesis and characterization. RSC Adv. 8(39), 22103 (2018)

    Article  ADS  Google Scholar 

  23. A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, A.V. Dvurechenskii, A.A. Shklyaev, Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors. Mater. Res. Express 3(10), 105032 (2016)

    Article  ADS  Google Scholar 

  24. H. Sabit, S. Omer, Synthesis, characterizations and photovoltaic properties of Cr-doped CdS qds. J. Mater. Sci. Mater. Electron. 28(23), 1 (2017)

    Google Scholar 

  25. Y.X. Gu, X.G. Yang, H.M. Ji, P.F. Xu, T. Yang, Theoretical study of the effects of InAs/GaAs quantum dot layer’s position in i-region on current–voltage characteristic in intermediate band solar cells. Appl. Phys. Lett. 101(8), 5014 (2012)

    Article  Google Scholar 

  26. H. Gary, Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112(46), 17778 (2008)

    Article  Google Scholar 

  27. B.A. Smith, J.Z. Zhang, A. Joly, J. Liu, Luminescence decay kinetics of Mn\(^{2+}\)-doped ZnS nanoclusters grown in reverse micelles. Phys. Rev. B 62(3), 2021 (2000)

    Article  ADS  Google Scholar 

  28. P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508 (2012)

    Article  Google Scholar 

  29. S. Horoz, B. Yakami, U. Poudyal, J.M. Pikal, W. Wang, J. Tang, Controlled synthesis of Eu\(^{2+}\) and Eu\(^{3+}\) doped \({ZnS}\) quantum dots and their photovoltaic and magnetic properties. AIP Adv. 6(45119), 7 (2016)

    Google Scholar 

  30. M. Zavvari, V. Ahmadi, Self quenched quantum dot avalanche photodetector for mid-infrared single photon detection. Infrared Phys. Technol. 62, 7–12 (2014)

    Article  ADS  Google Scholar 

  31. E.M. Conroy, J.J. Li, H. Kim, W.R. Algar, Self-quenching, dimerization, and homo-fret in hetero-fret assemblies with quantum dot donors and multiple dye acceptors. J. Phys. Chem. C 120, 17817–17828 (2016)

    Article  Google Scholar 

  32. A.S. Bracker, M. Scheibner, M.F. Doty, E.A. Stinaff, I.V. Ponomarev, J.C. Ponomarev, L.J. Kim, Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Appl. Phys. Lett. 89(23), 233110 (2006)

    Article  ADS  Google Scholar 

  33. L.X. Xu, S.C. Zhao, S.N. Zhu, L.J. Chen, Differentiation of correlated fluctuations in site energy on excitation energy transfer in photosynthetic light-harvesting complexes. Results Phys. 38, 105597 (2022)

    Article  Google Scholar 

  34. Y.K. Wang, I.C. Khoo, On the Wigner–Weisskopf approximation in quantum optics. Opt. Commun. 11(4), 323 (1974)

    Article  ADS  Google Scholar 

  35. L.X. Xu, S.C. Zhao, L.F. Li, Photosynthetic properties assisted by the quantum entanglement in two adjacent pigment molecules. Eur. Phys. J. Plus 136, 683 (2022)

    Article  Google Scholar 

  36. A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Enhancing photovoltaic power by fano-induced coherence. Phys. Rev. A 84, 053818 (2011)

    Article  ADS  Google Scholar 

  37. F. Aydin, H. Sari, E. Kasapoglu, S. Sakiroglu, I. Skmen, The anisotropy effects on the shallow-donor impurity states and optical transitions in quantum dots. Eur. Phys. J. Plus 136(8), 1 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

S. C. Zhao is grateful for funding from the National Natural Science Foundation of China (Grants 62065009 and 61565008) and Foundation for Personnel training projects of Yunnan Province, China (Grant 2016FB009).

Author information

Authors and Affiliations

Authors

Contributions

SCZ conceived the idea. SNZ performed the numerical computations and wrote the draft, and SCZ did the analysis and revised the paper. LJC and QF gave some discussion in the revised version.

Corresponding author

Correspondence to Shun-Cai Zhao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, SN., Zhao, SC., Chen, LJ. et al. Photoexcited carriers transfer properties in a doped double quantum dots photocell. Eur. Phys. J. Plus 138, 1053 (2023). https://doi.org/10.1140/epjp/s13360-023-04660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04660-4

Navigation